The action of a~group on a~graph
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 429-447

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of automorphisms of a connected graph $\Gamma$ is given. In particular, an automorphism $g$ is called an $o$-automorphism if for some (and then also for any) vertex $x$ of the graph $\Gamma$ $$ \max\{d_\Gamma(y,g(y))\mid y\in V(\Gamma),\ d_\Gamma(x,y)\leqslant n\}=o(n). $$ It is proved that a connected locally finite graph admits a vertex-transitive group of $o$-automorphisms if and only if the graph is a nilpotent lattice. Bibliography: 9 titles.
@article{IM2_1987_29_2_a7,
     author = {V. I. Trofimov},
     title = {The action of a~group on a~graph},
     journal = {Izvestiya. Mathematics },
     pages = {429--447},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a7/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - The action of a~group on a~graph
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 429
EP  - 447
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a7/
LA  - en
ID  - IM2_1987_29_2_a7
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T The action of a~group on a~graph
%J Izvestiya. Mathematics 
%D 1987
%P 429-447
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a7/
%G en
%F IM2_1987_29_2_a7
V. I. Trofimov. The action of a~group on a~graph. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 429-447. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a7/