Exact and asymptotic solutions of systems with turning points
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 355-370

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of linear ordinary differential equations with analytic coefficients and small parameters on the derivative is considered. In a neighborhood of a turning point a new representation is constructed for the exact solution of the system in the form of a multiphase series. It is proved that this series converges uniformly with respect to the parameter. An expression is obtained for the Stokes constant at the maximal exponential. Bibligraphy: 10 titles.
@article{IM2_1987_29_2_a4,
     author = {V. V. Kucherenko and Yu. V. Osipov},
     title = {Exact and asymptotic solutions of systems with turning points},
     journal = {Izvestiya. Mathematics },
     pages = {355--370},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a4/}
}
TY  - JOUR
AU  - V. V. Kucherenko
AU  - Yu. V. Osipov
TI  - Exact and asymptotic solutions of systems with turning points
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 355
EP  - 370
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a4/
LA  - en
ID  - IM2_1987_29_2_a4
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%A Yu. V. Osipov
%T Exact and asymptotic solutions of systems with turning points
%J Izvestiya. Mathematics 
%D 1987
%P 355-370
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a4/
%G en
%F IM2_1987_29_2_a4
V. V. Kucherenko; Yu. V. Osipov. Exact and asymptotic solutions of systems with turning points. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 355-370. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a4/