Ground states in a model of Frenkel–Kontorova type
Izvestiya. Mathematics, Tome 29 (1987) no. 2, pp. 323-354
Cet article a éte moissonné depuis la source Math-Net.Ru
The structure of configurations of particles with hard cores having minimal energy is studied in models of Frenkel–Kontorova type under the condition that the interaction potential rapidly decreases at infinity. Bibliography: 5 titles.
@article{IM2_1987_29_2_a3,
author = {A. Ya. Zaslavskii},
title = {Ground states in a~model of {Frenkel{\textendash}Kontorova} type},
journal = {Izvestiya. Mathematics},
pages = {323--354},
year = {1987},
volume = {29},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a3/}
}
A. Ya. Zaslavskii. Ground states in a model of Frenkel–Kontorova type. Izvestiya. Mathematics, Tome 29 (1987) no. 2, pp. 323-354. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a3/
[1] Aubry S., “The twist map, the extended Frenkel–Kontorova model and the devil's staircase”, Phys. D: Nonlinear phenomena, 7:1–3 (1983), 240–258 | DOI | MR
[2] Greene J., “A method for determining a stochastic transition”, Math. Phys., 20:6 (1979), 1183–1201 | DOI
[3] Percival J. C., “Regular and irregular spectra”, Phys. D.: Atom and Mol. Phys., 6:9 (1976), 1229–1232
[4] Pokrovsky V. L., “Splitting of commensurate-incommensurate phase transition”, Physique, 42:6 (1981), 761–766 | DOI | MR
[5] Aubry S., “Defectibility and frustration in incommensurate structures. The devil's staircase transformation”, Ferroelectrics, 24:1 (1980), 53–60 | DOI | MR