The Hasse norm principle for algebraic number fields
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 299-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hasse norm principle is studied for arbitrary extensions of algebraic number fields on the basis of an interpretation of the obstruction to the Hasse principle in terms of local and global Galois groups. One of the central results is the solution of Bartels' problem on the Hasse principle for subfields of finite-dimensional division rings. Bibliography: 24 titles.
@article{IM2_1987_29_2_a2,
     author = {Yu. A. Drakokhrust and V. P. Platonov},
     title = {The {Hasse} norm principle for algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {299--322},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Drakokhrust
AU  - V. P. Platonov
TI  - The Hasse norm principle for algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 299
EP  - 322
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a2/
LA  - en
ID  - IM2_1987_29_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Drakokhrust
%A V. P. Platonov
%T The Hasse norm principle for algebraic number fields
%J Izvestiya. Mathematics 
%D 1987
%P 299-322
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a2/
%G en
%F IM2_1987_29_2_a2
Yu. A. Drakokhrust; V. P. Platonov. The Hasse norm principle for algebraic number fields. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 299-322. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a2/

[1] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[2] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977 | MR

[3] Demushkin S. P., “Gruppa maksimalnogo $p$-rasshireniya lokalnogo polya”, Izv. AN SSSR. Ser. matem., 25:3 (1961), 329–346 | Zbl

[4] Kartan A., Eilenberg S., Gomologicheskaya algebra, IIL, M., 1960

[5] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[6] Kuzmin L. V., “Gomologii prokonechnykh grupp, multiplikator Shura i teoriya polei klassov”, Izv. AN SSSR. Ser. matem., 33:6 (1969), 1220–1254 | MR

[7] Platonov V. P., “Arifmeticheskaya teoriya algebraicheskikh grupp”, Uspekhi matem. nauk, 37:3(225) (1982), 3–54 | MR | Zbl

[8] Platonov V. P., Rapinchuk A. S., “Multiplikativnaya struktura tel nad chislovymi polyami i normennyi printsip Khasse”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 171–187 | MR | Zbl

[9] Platonov V. P., Drakokhrust Yu. A., “O printsipe Khasse dlya polei algebraicheskikh chisel”, Dokl. AN SSSR, 281:4 (1985), 793–797 | MR | Zbl

[10] Platonov V. P., Drakokhrust Yu. A., “Normennyi printsip Khasse dlya primarnykh rasshirenii polei algebraicheskikh chisel”, Dokl. AN SSSR, 285:4 (1985), 812–815 | MR | Zbl

[11] Shafarevich I. R., “O $p$-rasshireniyakh”, Matem. sbornik, 20 (1947), 351–363 | Zbl

[12] Artin E., Tate J., Class field theory, Benjamin INC, New York, Amsterdam, 1967 | MR | Zbl

[13] Bartels H.-J., “Zur Arithmetik von Konjugationklassen in algebraischen Gruppen”, Algebra, 70:1 (1981), 179–199 | DOI | MR | Zbl

[14] Bartels H.-J., “Zur Arithmetik von Diedergruppenerweiterungen”, Math. Ann., 256:4 (1981), 465–473 | DOI | MR | Zbl

[15] Beyl F. R., Tappe J., Group extensions, representations and the Schur multiplicator, Lect. Notes Math., 958, 1982 | MR | Zbl

[16] Butler G., Mc. Kay J., “The transitive groups of degree up to eleven”, Commun. Algebra, 11:8 (1983), 863–911 | DOI | MR | Zbl

[17] Colliot-Thelénè J.-L., Sansuc J.-J., “La $R$-équivalence sur les tores”, Ann. Sci. École Norm. Sup. (4), 10:2 (1977), 175–229 | MR | Zbl

[18] Gurak S., “On the Hasse norm principle”, J. reine angew. Math., 299/300 (1978), 16–27 | MR | Zbl

[19] Gurak S., “The Hasse norm principle in nonabelian extensions”, J. reine angew. Math., 303/304 (1978), 314–318 | MR | Zbl

[20] Hasse H., “Neue Begründung und Verallgemeinerung der Theorie des Normrestsymbols”, J. reine angew. Math., 162 (1930), 134–144 | Zbl

[21] Opolka H., “Zur Auflösung zahlentheoreticher Knoten”, Math. Z., 173 (1980), 95–103 | DOI | MR | Zbl

[22] Schacher M., “Subfields of division rings 1”, Algebra, 9:4 (1968), 451–477 | DOI | MR | Zbl

[23] Fein B., Kantor W., Schacher M., “Relative Brauer groups. II”, J. reine angew. Math., 328 (1981) | MR | Zbl

[24] Tahara K.-I., “On the second cohomology group of semidirect products”, Math. Z., 129:4 (1972), 365–379 | DOI | MR | Zbl