Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1987_29_2_a1, author = {V. I. Danilov and A. G. Khovanskii}, title = {Newton polyhedra and an algorithm for computing {Hodge--Deligne} numbers}, journal = {Izvestiya. Mathematics }, pages = {279--298}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {1987}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a1/} }
TY - JOUR AU - V. I. Danilov AU - A. G. Khovanskii TI - Newton polyhedra and an algorithm for computing Hodge--Deligne numbers JO - Izvestiya. Mathematics PY - 1987 SP - 279 EP - 298 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a1/ LA - en ID - IM2_1987_29_2_a1 ER -
V. I. Danilov; A. G. Khovanskii. Newton polyhedra and an algorithm for computing Hodge--Deligne numbers. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 279-298. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a1/
[1] Delin P., “Teoriya Khodzha. II”, Matematika, 17:5 (1973), 3–57 | MR
[2] Deligne P., “Theorie de Hodge. III”, Publ. Math. IHES, 1974, no. 44, 5–77 | MR | Zbl
[3] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2 (1978), 85–134 | MR | Zbl
[4] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[5] Danilov V. I., “Mnogogranniki Nyutona i ischezayuschie kogomologii”, Funkts. analiz i ego prilozh., 13:2 (1979), 32–47 | MR | Zbl
[6] Khovanskii A. G., “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 56–67 | MR
[7] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego prilozh., 12:1 (1978), 51–61 | MR
[8] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal Embeddings. I, Lecture Notes in Mathematics, 339, Springer-Verlag, Berlin, 1973 | MR | Zbl