Spectral properties of generic dynamical systems
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 159-192

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems with new spectral properties are constructed using approximation theory. It is proved that these properties are generic (in a metric and topological sense) and realized within the class of smooth systems preserving a smooth measure. Bibliography: 21 titles.
@article{IM2_1987_29_1_a9,
     author = {A. M. Stepin},
     title = {Spectral properties of generic dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {159--192},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/}
}
TY  - JOUR
AU  - A. M. Stepin
TI  - Spectral properties of generic dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 159
EP  - 192
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/
LA  - en
ID  - IM2_1987_29_1_a9
ER  - 
%0 Journal Article
%A A. M. Stepin
%T Spectral properties of generic dynamical systems
%J Izvestiya. Mathematics 
%D 1987
%P 159-192
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/
%G en
%F IM2_1987_29_1_a9
A. M. Stepin. Spectral properties of generic dynamical systems. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 159-192. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/