Spectral properties of generic dynamical systems
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 159-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems with new spectral properties are constructed using approximation theory. It is proved that these properties are generic (in a metric and topological sense) and realized within the class of smooth systems preserving a smooth measure. Bibliography: 21 titles.
@article{IM2_1987_29_1_a9,
     author = {A. M. Stepin},
     title = {Spectral properties of generic dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {159--192},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/}
}
TY  - JOUR
AU  - A. M. Stepin
TI  - Spectral properties of generic dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 159
EP  - 192
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/
LA  - en
ID  - IM2_1987_29_1_a9
ER  - 
%0 Journal Article
%A A. M. Stepin
%T Spectral properties of generic dynamical systems
%J Izvestiya. Mathematics 
%D 1987
%P 159-192
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/
%G en
%F IM2_1987_29_1_a9
A. M. Stepin. Spectral properties of generic dynamical systems. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 159-192. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a9/

[1] Anosov D. V., Katok A. B., “Novye primery v gladkoi ergodicheskoi teorii. Ergodicheskie diffeomorfizmy”, Tr. Mosk. matem. o-va, 23, 1970, 3–36 | MR | Zbl

[2] Vershik A. M., “Obschaya teoriya gaussovykh mer v lineinykh prostranstvakh”, Uspekhi matem. nauk, 19:1 (1964), 210–212 | MR

[3] Girsanov I. V., “O spektrakh dinamicheskikh sistem, porozhdaemykh statsionarnymi gaussovskimi protsessami”, Dokl. AN SSSR, 119:5 (1958), 851–853 | MR | Zbl

[4] Katok A. B., Stepin A. M., “Metricheskie svoistva gomeomorfizmov, sokhranyayuschikh meru”, Uspekhi matem. nauk, 25:2 (1970), 193–220 | MR | Zbl

[5] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[6] Malyshev V. A., “Pochti invariantnye mery”, Vestn. Mosk. un-ta. Ser. 1, mat., mekh., 1964, no. 6, 48–50 | Zbl

[7] Oseledets V. I., “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | Zbl

[8] Rokhlin V. A., Fomin S. V., “Spektralnaya teoriya dinamicheskikh sistem”, Tr. 3-go Vses. matem. s'ezda, 1956, t. 3, AN SSSR, M., 1958, 284–292

[9] Sinai Ya. G., “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem”, Dokl. AN SSSR, 150:6 (1963), 1235–1237 | MR | Zbl

[10] Stepin A. M., Primenenie metoda approksimatsii metricheskikh avtomorfizmov periodicheskimi v spektralnoi teorii, Avtoref. diss. kand. fiz.-mat. nauk, MGU, 1968

[11] Stepin A. M., “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem s lokalno kompaktnym vremenem”, Dokl. AN SSSR, 169:4 (1966), 773–776 | MR | Zbl

[12] Fomin S. V., “Normalnye dinamicheskie sistemy”, Ukr. matem. zhurn., 2:2 (1950), 25–47 | MR | Zbl

[13] Khalmosh P. R., Lektsii po ergodicheskoi teorii, IIL, M., 1951

[14] Shiryaev A. N., “Nekotorye voprosy spektralnoi teorii starshikh momentov”, Teoriya veroyatnostei i ee primen., 5:3 (1960), 293–313 | Zbl

[15] Shklover M. D., “O klassicheskikh dinamicheskikh sistemakh na tore s nepreryvnym spektrom”, Izv. VUZov. Matematika, 1967, no. 10, 113–124 | MR | Zbl

[16] Blanc-Lappierre et Fortet, Theorie des functions aleatoires, Paris, 1953

[17] Brown M., “A mapping theorem for untriangulated manifolds”, Topology of 3-manifolds and related topics, 1962, 92–94 | MR

[18] Doyle P. H., Hocking J. G., “A decomposition theorem for $n$-dimensional manifolds”, Proc. Amer. Math. Soc., 13:3 (1962), 469–471 | DOI | MR | Zbl

[19] Foias C., “Sur les mesures soectrales qui interviennent dans la theorie ergodique”, J. Math. and Mech., 13:4 (1964), 639–658 | MR | Zbl

[20] Ionesku Tulcea A., “Random series and spectra of measure-preserving transformations”, Ergodic theory, Acad. Press, New York, London, 1963, 273–292 | MR

[21] Sinai J. G., “Mesures invariantes des $Y$-systemes”, Actes Congr. intern. math., 1970, t. 2, Paris, 1971, 929–940 | MR | Zbl