Spectrum, similarity, and invariant subspaces of Toeplitz operators
Izvestiya. Mathematics, Tome 29 (1987) no. 1, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are obtained for the resolvents of Toeplitz operators under certain restrictions on their symbols. Conditions are found for the existence of nontrivial invariant subspaces and for a Toeplitz operator to be similar to a unitary operator. A theorem on inclusion of spectra is obtained for Toeplitz operators with unimodular symbols. Bibliography: 26 titles.
@article{IM2_1987_29_1_a7,
     author = {V. V. Peller},
     title = {Spectrum, similarity, and invariant subspaces of {Toeplitz} operators},
     journal = {Izvestiya. Mathematics},
     pages = {133--144},
     year = {1987},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a7/}
}
TY  - JOUR
AU  - V. V. Peller
TI  - Spectrum, similarity, and invariant subspaces of Toeplitz operators
JO  - Izvestiya. Mathematics
PY  - 1987
SP  - 133
EP  - 144
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a7/
LA  - en
ID  - IM2_1987_29_1_a7
ER  - 
%0 Journal Article
%A V. V. Peller
%T Spectrum, similarity, and invariant subspaces of Toeplitz operators
%J Izvestiya. Mathematics
%D 1987
%P 133-144
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a7/
%G en
%F IM2_1987_29_1_a7
V. V. Peller. Spectrum, similarity, and invariant subspaces of Toeplitz operators. Izvestiya. Mathematics, Tome 29 (1987) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a7/

[1] Peller V. V., “Invariantnye podprostranstva operatorov Tëplitsa”, Zap. nauchn. semin. LOMI, 126 (1983), 170–179 | MR | Zbl

[2] Douglas R. G., Banach algebra techniques in operator theory, Acad. Press, New York, London, 1972 | MR | Zbl

[3] Douglas R. G., Banach algebra techniques in the theory of Toeplitz operators, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 15, American Mathematical Society, Providence, 1973 | MR | Zbl

[4] Sarason D., Function theory on the unit circle, Notes for lect. at a conference at Virginia Polyt. Inst. and State Univ., 1978 | MR

[5] Nikolskii N. K., Operatory Gankelya i Tëplitsa, Preprinty LOMI R–1–82, R–2–82, R–5–82, Leningrad, 1982 | MR

[6] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, Uspekhi matem. nauk, 37:1 (1982), 53–124 | MR | Zbl

[7] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matem. analiz, 12, 1974, 199–412

[8] Radjavi H., Rosenthal P., Invariant subspaces, Springer-Verlag, N. Y., Heidelberg, Berlin, 1973 | MR | Zbl

[9] Dynkin E. M., “Teoremy tipa Vinera–Levi i otsenki dlya operatorov Vinera–Khopfa”, Matem. issled., 8:3 (1973), 14–25, Kishinev | MR

[10] Gambler L. C., A study of rational Toeplitz operators, Ph. D. Dissertation, SUNY at Stony Brook, 1977

[11] Peller V. V., Some problems of spectral theory of Toeplitz operator (Spectra, similarity, invariant subspaces), Preprints LOMI E–2–84, Leningrad, 1984 | MR

[12] Lyubich Yu. I., Matsaev V. I., “Ob operatorakh s otdelimym spektrom”, Matem. sb., 56:4 (1962), 433–468

[13] Colojoara I., Foias C., The theory of generalized spectral operators, Gordon and Breach, N. Y., 1968 | MR | Zbl

[14] Lomonosov V. I., Lyubich Yu. I., Matsaev V. I., “Dvoistvennost spektralnykh podprostranstv i usloviya otdelimosti spektra ogranichennogo operatora”, Dokl. AN SSSR, 216:4 (1974), 737–739 | MR | Zbl

[15] Bishop E., “A duality theorem for an arbitrary operator”, Pac. J. Math., 9:2 (1959), 379–397 | MR | Zbl

[16] Levinson N., Gap and Density theorems, Amer. Math. Soc. Coll. Publ., 26, American Mathematical Society, New York, 1940 | MR | Zbl

[17] Domar Y., “On the existence of a largest subharmonic minorant of a given function”, Arkiv for Mathem., 3:5 (1958), 429–440 | DOI | MR | Zbl

[18] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[19] Spitkovskii I. M., “O mnozhitelyakh, ne vliyayuschikh na faktorizatsiyu”, Matem. zametki, 27:2 (1980), 291–299 | MR | Zbl

[20] Gokhberg I. Ts., Krein M. G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. anal. i ego prilozh., 1:1 (1967), 38–60 | Zbl

[21] van Casteren J. A., “A problem of Szeged–Nagy”, Acta Sci. Math., 42 (1980), 189–194 | MR | Zbl

[22] Naboko S. N., “Ob usloviyakh podobiya operatorov unitarnym i samosopryazhennym”, Funkts. anal. i ego prilozh., 18:1 (1984), 16–27 | MR | Zbl

[23] Clark D. N., “On a similarity theory for rational Toeplitz operators”, Reine und Angew. Math., 320 (1980), 6–31 | MR | Zbl

[24] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[25] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[26] Hruščëv S. V., Vinogradov S. A., “Inner functions and multipliers of Cauchy type integrals”, Ark. for Math., 19:1 (1981), 23–42 | DOI | MR