The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 95-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem with rapidly oscillating initial conditions is investigated for the class of nonstrictly hyperbolic equations with nonsmooth characteristics. The domain of applicability of the Maslov canonical operator method is determined. Bibliography: 12 titles.
@article{IM2_1987_29_1_a5,
     author = {V. V. Kucherenko and L. Yu. Motylev},
     title = {The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics},
     journal = {Izvestiya. Mathematics },
     pages = {95--117},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a5/}
}
TY  - JOUR
AU  - V. V. Kucherenko
AU  - L. Yu. Motylev
TI  - The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 95
EP  - 117
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a5/
LA  - en
ID  - IM2_1987_29_1_a5
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%A L. Yu. Motylev
%T The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics
%J Izvestiya. Mathematics 
%D 1987
%P 95-117
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a5/
%G en
%F IM2_1987_29_1_a5
V. V. Kucherenko; L. Yu. Motylev. The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 95-117. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a5/

[1] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[2] Ivrii V. Ya., Petkov V. M., “Neobkhodimye usloviya korrektnosti zadachi Koshi dlya nestrogo giperbolicheskikh uravnenii”, Uspekhi matem. nauk, 29 (1974), 3–70 | MR | Zbl

[3] Kucherenko V. V., Motylev L. Yu., “Nestrogo giperbolicheskoe uravnenie s negladkimi kharakteristikami”, Dokl. AN SSSR, 276 (1984), 1056–1059 | MR | Zbl

[4] Kucherenko V. V., Osipov Yu. V., “Zadacha Koshi dlya nestrogo giperbolicheskikh uravnenii”, Matem. sb., 120 (1983), 84–111 | MR | Zbl

[5] Kucherenko V. V., Osipov Yu. V., “Asimptoticheskie resheniya obyknovennykh differentsialnykh uravnenii s vyrozhdayuschimsya simvolom”, Matem. sb., 118 (1982), 74–103 | MR | Zbl

[6] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[7] Danilov V. G., “Otsenki dlya kanonicheskikh psevdodifferentsialnykh operatorov s kompleksnoi fazoi”, Dokl. AN SSSR, 244 (1979), 800–804 | MR | Zbl

[8] Khermander L., “Integralnye operatory Fure. I,II”, Matematika, 16:1 (1972), 17–61 ; 2, 67–136 | Zbl

[9] Karasev M. V., “Ischislenie pochti proizvodyaschikh uporyadochennykh operatorov”, Tr. MIEM, 38, 1974, 73–115 | MR

[10] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[11] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[12] Williamson J., “On an algebraic problem, concerning the normal forms of linear dynamical systems”, Amer. J. of Math., 58 (1936), 141–163 | DOI | MR | Zbl