Minimal objects of algebraic spaces
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

The author introduces a notion of the minimal object of a field $K$ finitely generated over $\mathbf C$ which generalizes the notion of a minimal model of $K$. In the case of an algebraic surface not isomorphic to a rational or ruled surface, it coincides with the minimal model. The minimal objects of three-dimensional algebraic spaces are investigated. Bibliography: 6 titles.
@article{IM2_1987_29_1_a4,
     author = {Vik. S. Kulikov},
     title = {Minimal objects of algebraic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {81--94},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Minimal objects of algebraic spaces
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 81
EP  - 94
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a4/
LA  - en
ID  - IM2_1987_29_1_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Minimal objects of algebraic spaces
%J Izvestiya. Mathematics 
%D 1987
%P 81-94
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a4/
%G en
%F IM2_1987_29_1_a4
Vik. S. Kulikov. Minimal objects of algebraic spaces. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a4/