On Fr\'echet spaces with certain classes of proximal subspaces
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 67-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new metric with absolutely convex balls is introduced on a metrizable locally convex space. Necessary and sufficient conditions are given for all closed hypersubspaces and all nonnormable closed subspaces of a Fréchet space to be proximal, i.e., to have the property that there exist elements of best approximation with respect to this metric. In particular, these conditions are expressed in terms of the topologies of the original space and the strong dual space. It is proved that the Fréchet spaces $B\times\omega$ have the proximality property, where $B$ is a reflexive Banach space and $\omega=R^N$ is the nuclear Fréchet space of all numerical sequences. Questions of Albinus and Wriedt are answered. Bibliography: 23 titles.
@article{IM2_1987_29_1_a3,
     author = {D. N. Zarnadze},
     title = {On {Fr\'echet} spaces with certain classes of proximal subspaces},
     journal = {Izvestiya. Mathematics },
     pages = {67--79},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a3/}
}
TY  - JOUR
AU  - D. N. Zarnadze
TI  - On Fr\'echet spaces with certain classes of proximal subspaces
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 67
EP  - 79
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a3/
LA  - en
ID  - IM2_1987_29_1_a3
ER  - 
%0 Journal Article
%A D. N. Zarnadze
%T On Fr\'echet spaces with certain classes of proximal subspaces
%J Izvestiya. Mathematics 
%D 1987
%P 67-79
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a3/
%G en
%F IM2_1987_29_1_a3
D. N. Zarnadze. On Fr\'echet spaces with certain classes of proximal subspaces. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a3/

[1] James R. C., “Characterizations of reflexivity”, Studia Math., 23 (1964), 205–216 | MR | Zbl

[2] Hirschfeld R., “On best approximation in normed vector spaces”, Niew arch. wiskunde, 3:6 (1958), 41–51 | MR

[3] Singer I., Best approximation in normed linear spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970 | MR

[4] Floret K., Wriedt M., “Reflexivität und Bestaoproximation in Frechet-Räumen”, Arch. Math., 23 (1972), 70–72 | DOI | MR | Zbl

[5] Zarnadze D. N., “Refleksivnost i nailuchshie priblizheniya v prostranstvakh Freshe”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 821–830 | MR | Zbl

[6] Wriedt M., “Beiträge zur Approximationstheorie in metrisierbaren lokalkonvexen Räumen”, Math. Nachr., 64 (1974), 134–147 | DOI | MR

[7] Albinus G., Lineare Approximationstheorie in klassen metrischer Vektorräumen, Dis. zur erlangung des Akademischen Grades eines habilitirten Doktors der Naturwissenschaften, Dresden TU, 99 s | Zbl

[8] Albinus G., “Normartige Metriken auf metrisierbaren lokalkonvexen topologischen Vektorräumen”, Math. Nachr., 37 (1968), 177–195 | DOI | MR

[9] Albinus G., “Approximationstheorie im Raum $C(R)$”, Beiträge zur Analysis, 3 (1972), 31–44 | MR | Zbl

[10] Dieudonne J., Schwartz L., “La dualite dans les espaces $(\mathscr F)$ et $(\mathscr L\mathscr F)$”, Ann. Inst. Fourier (Grenoble), 1 (1950), 61–101 ; Matematika, 2:2 (1958), 77–117 | MR

[11] Grothendieck A., “Sur les espaces $(\mathscr F)$ et $(\mathscr D\mathscr F)$”, Summa Brasil Math., 3 (1954), 57–123 ; Matematika, 2:3 (1958), 81–127 | MR | MR

[12] Zarnadze D. N., “Zamechanie o teoreme metrizatsii lineinogo topologicheskogo prostranstva”, Matem. zametki, 37:5 (1985), 763–773 | MR | Zbl

[13] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR

[14] Kadets V. M., Kadets M. I., “Ob odnom uslovii normiruemosti prostranstv Freshe”, Matem. zametki, 38:1 (1985), 142–147 | MR | Zbl

[15] Zarnadze D. N., “Refleksivnost i nailuchshie priblizheniya v nekotorykh lokalno vypuklykh prostranstvakh”, Trudy VTs AN GSSR, XXII, no. 1, 1982, 40–52 | MR

[16] Slowikowski W., Zawadowski W., “Note on relatively complete $B_0$-spaces”, Studia Math., 15 (1956), 267–272 | MR | Zbl

[17] Dierolf S., Zarnadze D. N., “A note on strictly regular Frechet spaces”, Arch. Math., 42 (1984), 549–556 | DOI | MR | Zbl

[18] Dierolf S., Floret K., “Über die Fortzetztbarkeit stetiger Normen”, Arch. Math., 35 (1980), 149–154 | DOI | MR | Zbl

[19] Zarnadze D. N., “O strogo pravilnykh prostranstvakh Freshe”, Matem. zametki, 31:6 (1982), 899–908 | MR | Zbl

[20] Köthe G., Topologische lineare Räume. I, Springer-Verlag, Berlin, Göttingen, Heidelberg, I960 | MR

[21] Makarov B. M., “Ob induktivnykh predelakh normirovannykh prostranstv”, Vestnik LGU, 13 (1965), 50–58 | Zbl

[22] Eberhardt V., “Beispiele topologischer Vektorräume mit der Kornplementerraumeigenschaft”, Arch. Math., 26:6 (1975), 627–637 | DOI | MR

[23] Bessaga C., Pelczynski A., Rolewicz S., “Some properties of the space $s$”, Coll. Math., 7 (1959), 45–51 | MR