Averaging of functionals of the calculus of variations and elasticity theory
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 33-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Duality methods in the theory of averaging of nonlinear variational problems are developed. The questions of a general nature that are discussed include a detailed analysis of the concept of regularity, an example of a nonregular Lagrangian, and the derivation of duality formulas that take account of the regularity problem. The main content is concerned with the averaging of variational problems with stochastic Lagrangians. Three groups of questions are investigated: 1) averaging of Lagrangians of a general form; 2) averaging of the Lagrangians of plasticity (the theory of the limit load); and 3) averaging of degenerate Lagrangians (problems with random soft or rigid inclusions). Bibliography: 13 titles.
@article{IM2_1987_29_1_a2,
     author = {V. V. Zhikov},
     title = {Averaging of functionals of the calculus of variations and elasticity theory},
     journal = {Izvestiya. Mathematics },
     pages = {33--66},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Averaging of functionals of the calculus of variations and elasticity theory
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 33
EP  - 66
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a2/
LA  - en
ID  - IM2_1987_29_1_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Averaging of functionals of the calculus of variations and elasticity theory
%J Izvestiya. Mathematics 
%D 1987
%P 33-66
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a2/
%G en
%F IM2_1987_29_1_a2
V. V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 33-66. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a2/

[1] Bakhvalov N. S., “Osrednenie nelineinykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 225:2 (1975), 249–252 | MR | Zbl

[2] Berdichevskii V. L., “Prostranstvennoe osrednenie periodicheskikh struktur”, Dokl. AN SSSR, 222:3 (1975), 565–568 | MR

[3] De Giorgi E., “Sulla convergenza di alcune successoni di integrali tipo dell'area”, Rend. Math. Roma, 12 (1975), 227–294

[4] Sbordone C., “Su alcune applicazioni di un tipo convergenza variazionale”, Ann. Sc. Norm. Sup. Pisa, 2 (1975), 617–638 | MR | Zbl

[5] Morrey C. B., Multiple integrals in calculus of variations, Springer-Verlag, 1966 | MR

[6] Zhikov V. V., Kozlov S. M., Oleinik O. A., “O $G$-skhodimosti parabolicheskikh operatorov”, Uspekhi matem. nauk, 36:1 (1981), 11–58 | MR

[7] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–998 | MR | Zbl

[8] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[10] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[11] Ulam S., Nereshennye matematicheskie zadachi, Mir, M., 1964

[12] Bobylev N. A., “K probleme Ulama ob ustoichivosti ekstremalei funktsionalov variatsionnogo ischisleniya”, Uspekhi matem. nauk, 38:5 (1983), 159

[13] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962