The hartogs phenomenon for holomorphically convex K\"ahler manifolds
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 225-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is said that the Hartogs phenomenon occurs for a complex manifold $Y$ if every holomorphic mapping $f$ of a domain $D$ over $\mathbf C^n$ into $Y$ extends to a holomorphic mapping $\widetilde f$ of the envelope of holomorphy $\widetilde D$ into $Y$. In this paper it is proved that a holomorphically convex Kähler manifold $Y$ exhibits the Hartogs phenomenon if and only if $Y$ contains no rational curves. Bibliography: 10 titles.
@article{IM2_1987_29_1_a12,
     author = {S. M. Ivashkovich},
     title = {The hartogs phenomenon for holomorphically convex {K\"ahler} manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {225--232},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a12/}
}
TY  - JOUR
AU  - S. M. Ivashkovich
TI  - The hartogs phenomenon for holomorphically convex K\"ahler manifolds
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 225
EP  - 232
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a12/
LA  - en
ID  - IM2_1987_29_1_a12
ER  - 
%0 Journal Article
%A S. M. Ivashkovich
%T The hartogs phenomenon for holomorphically convex K\"ahler manifolds
%J Izvestiya. Mathematics 
%D 1987
%P 225-232
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a12/
%G en
%F IM2_1987_29_1_a12
S. M. Ivashkovich. The hartogs phenomenon for holomorphically convex K\"ahler manifolds. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 225-232. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a12/

[1] Adaxi K., Suzuki M., Ioshida M., “Continuation of holomorphic mappings with values in complex Lie group”, Pacif. J. Math., 47:1 (1973), 1–4 | MR

[2] Gauduchon P., “Les metriques standard d'une surface complexe compacte a premier nombre Betti pair”, Asterisque, 86 (1984), 129–135 | MR

[3] Griffiths P., “Two Theorems on Extensions of Holomorphic Mappings”, Inventiones math., 14 (1971), 27–62 | DOI | MR | Zbl

[4] Shiffman B., “Extension of Holomorphic Maps into Hermitian Manifolds”, Math. Ann., 194 (1971), 249–258 | DOI | MR

[5] Siu Yum-Tong, “Extension Problems in Several Complex Variables”, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, 669–674 | MR

[6] Siu Yum-Tong, “Every Stein Subvariety Admits a Stein Neighborhood”, Invent. math., 38:1 (1976), 89–100 | DOI | MR | Zbl

[7] Strozenberg G., “Volumes, Limits and Extensions of Analytic Varietes”, Lect. notes math., 19, Springer, 1966 | MR

[8] Siu Yum-Tong, “Some Recent Developments in Complex Differential Geometry”, Proc. Int. Congress Math. (August 16–24, 1983, Warsawa), 1, 287–297 | MR | Zbl

[9] Alexander H., Taylor B. A., Ullman J. L., “Areas of Projections of Analytic Sets”, Invent. math., 16 (1972), 335–341 | DOI | MR | Zbl

[10] Mamford D., Algebraicheskaya geometriya, t. I, Nauka, M., 1979