The equivariant index of $C^*$-elliptic operators
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a compact Lie group, and $A$ a $C^*$-algebra with identity.
A $K$-theory of $G$-equivariant $A$-vector bundles is developed along with a corresponding theory of Fredholm operators, and the analytic and topological indices of an elliptic equivariant pseudodifferential operator over a $C^*$-algebra $A$ are defined. An index theorem generalizing the Mishchenko–Fomenko theorem is proved.
Bibliography: 19 titles.
@article{IM2_1987_29_1_a11,
author = {E. V. Troitskii},
title = {The equivariant index of $C^*$-elliptic operators},
journal = {Izvestiya. Mathematics },
pages = {207--224},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/}
}
E. V. Troitskii. The equivariant index of $C^*$-elliptic operators. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/