The equivariant index of $C^*$-elliptic operators
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a compact Lie group, and $A$$C^*$-algebra with identity. A $K$-theory of $G$-equivariant $A$-vector bundles is developed along with a corresponding theory of Fredholm operators, and the analytic and topological indices of an elliptic equivariant pseudodifferential operator over a $C^*$-algebra $A$ are defined. An index theorem generalizing the Mishchenko–Fomenko theorem is proved. Bibliography: 19 titles.
@article{IM2_1987_29_1_a11,
     author = {E. V. Troitskii},
     title = {The equivariant index of $C^*$-elliptic operators},
     journal = {Izvestiya. Mathematics },
     pages = {207--224},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/}
}
TY  - JOUR
AU  - E. V. Troitskii
TI  - The equivariant index of $C^*$-elliptic operators
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 207
EP  - 224
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/
LA  - en
ID  - IM2_1987_29_1_a11
ER  - 
%0 Journal Article
%A E. V. Troitskii
%T The equivariant index of $C^*$-elliptic operators
%J Izvestiya. Mathematics 
%D 1987
%P 207-224
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/
%G en
%F IM2_1987_29_1_a11
E. V. Troitskii. The equivariant index of $C^*$-elliptic operators. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/