The equivariant index of $C^*$-elliptic operators
Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a compact Lie group, and $A$$C^*$-algebra with identity. A $K$-theory of $G$-equivariant $A$-vector bundles is developed along with a corresponding theory of Fredholm operators, and the analytic and topological indices of an elliptic equivariant pseudodifferential operator over a $C^*$-algebra $A$ are defined. An index theorem generalizing the Mishchenko–Fomenko theorem is proved. Bibliography: 19 titles.
@article{IM2_1987_29_1_a11,
     author = {E. V. Troitskii},
     title = {The equivariant index of $C^*$-elliptic operators},
     journal = {Izvestiya. Mathematics },
     pages = {207--224},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/}
}
TY  - JOUR
AU  - E. V. Troitskii
TI  - The equivariant index of $C^*$-elliptic operators
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 207
EP  - 224
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/
LA  - en
ID  - IM2_1987_29_1_a11
ER  - 
%0 Journal Article
%A E. V. Troitskii
%T The equivariant index of $C^*$-elliptic operators
%J Izvestiya. Mathematics 
%D 1987
%P 207-224
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/
%G en
%F IM2_1987_29_1_a11
E. V. Troitskii. The equivariant index of $C^*$-elliptic operators. Izvestiya. Mathematics , Tome 29 (1987) no. 1, pp. 207-224. http://geodesic.mathdoc.fr/item/IM2_1987_29_1_a11/

[1] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad $C^*$-algebrami”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 831–859 | MR | Zbl

[2] Mischenko A. S., Sharipov F., “Nezavisimost spektra ellipticheskogo operatora so sluchainymi koeffitsientami”, Vestn. Mosk. un-ta. Ser. 1, matem., mekh., 1983, no. 6, 51–56 | Zbl

[3] Ronsenberg J., “$C^*$-algebras, positive scalar curvature, and the Novikov conjecture”, Publ. Math. IHES, 58 (1983), 197–212 | MR

[4] Kasparov G. G., “Topologicheskie invarianty ellipticheskikh operatorov. I. $K$-gomologii”, Izv. AN SSSR. Ser. matem., 39:4 (1975), 796–838 | MR | Zbl

[5] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 571–636 | MR | Zbl

[6] Karoubi M., “Algébras de Clifford et $K$-théorie”, Ann. Scient. Ecole Norm. Super. Ser. 4, 1:2 (1968), 161–270 | MR | Zbl

[7] Atya M., Segal G., “Ekvivariantnaya $K$-teoriya”, prilozhenie k kn.: Atya M., Lektsii po $K$-teorii, Mir, M., 1967, 131–205

[8] Karubi M., $K$-teoriya. Vvedenie, Mir, M., 1981 | MR

[9] Mischenko A. S., “Banakhovy algebry, psevdodifferentsialnye operatory i ikh prilozheniya k $K$-teorii”, Uspekhi matem. nauk, 34:6 (1979), 67–79 | MR | Zbl

[10] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. Math., 73:1 (1961), 20–48 | DOI | MR | Zbl

[11] Dupre M. J., Fillmore P. A., “Triviality for Hilbert modules, Topics in modern operator theory”, 5th International conference on operator theory (Timisoara and Herculane (Romania), June 2–12, 1980), Birchäuser Verlag, Basel, Boston, Stuttgart, 1981, 71–79 | MR

[12] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR

[13] Friedrich T., Voriesungen über $K$-Theorie, Teubner, Leipzig, 1978 | Zbl

[14] Mischenko A. S., “Predstavleniya kompaktnykh grupp v gilbertovykh modulyakh nad $C^*$-algebrami”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 166, 1984, 161–176 | Zbl

[15] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, N. Y., L., 1979 | MR | Zbl

[16] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, t. 1,2, Mir, M., 1980 | Zbl

[17] Kasparov G. G., “Hilbert $C^*$-modules: theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[18] Atya M. F., Zinger I. M., “Indeks ellipticheskikh operatorov. I”, Uspekhi matem. nauk, 23:5 (1968), 99–142 | MR

[19] Atya M. F., Segal G. B., “Indeks ellipticheskikh operatorov. II”, Uspekhi matem. nauk, 23:6 (1968), 135–149 | MR