Inductive and projective topologies. Sufficient sets and representing systems
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 529-554.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found for the equality of various topologies in inductive limits of spaces of functions defined on an arbitrary set. A new class of sufficient sets is introduced and its connection with classes studied previously is determined. The general dependence between weakly sufficient sets and absolutely representing systems is indicated. Bibliography: 32 titles.
@article{IM2_1987_28_3_a4,
     author = {Yu. F. Korobeinik},
     title = {Inductive and projective topologies. {Sufficient} sets and representing systems},
     journal = {Izvestiya. Mathematics },
     pages = {529--554},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a4/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Inductive and projective topologies. Sufficient sets and representing systems
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 529
EP  - 554
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a4/
LA  - en
ID  - IM2_1987_28_3_a4
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Inductive and projective topologies. Sufficient sets and representing systems
%J Izvestiya. Mathematics 
%D 1987
%P 529-554
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a4/
%G en
%F IM2_1987_28_3_a4
Yu. F. Korobeinik. Inductive and projective topologies. Sufficient sets and representing systems. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 529-554. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a4/

[1] Taylor B. A., “A seminorme Topology for Some $(\mathscr D\mathscr F)$-Spaces of Entire Functions”, Duke Mathem. Journ., 38:2 (1971), 379–385 | DOI | MR | Zbl

[2] Baernstein A. I., “Representation of Holomorphic Functions by Boundary Integrals”, Transact. of the Amer. Math. Soc., 60 (1971), 27–37 | DOI | MR

[3] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87:4 (1972), 459–489

[4] Edvards R., Funktsionalnyi analiz, Nauka, M., 1969, 1071 pp.

[5] Schneider D. M., “Sufficient Sets for Some Spaces of Entire Functions”, Trans. Amer. Math. Soc., 197 (1974), 161–180 | DOI | MR | Zbl

[6] Ehrenpreis L., Fourier analysis in several complex variables, Pure and Applied Mathematics, XVII, Wiley-Interscience, New York, 1970 | MR

[7] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[8] Robertson A., Robertson V. Dzh., Topologicheskie vektornye prostranstva, Mir, M., 1967, 255 pp. | MR | Zbl

[9] Korobeinik Yu. F., Operatory sdviga na chislovykh semeistvakh, Rostov. un-t, Rostov-na-Donu, 1983, 154 pp. | MR | Zbl

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[11] Sebastyan-i-Silva, “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77

[12] Köthe G., Topological Vector Spaces. I, Berlin, Heilderberg, New York, 1969 | MR

[13] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[14] Grotendik A., “O prostranstvakh $(\mascr F)$ i $(\mathscr D\marhscr F)$”, Matematika, 2:3 (1958), 81–127

[15] Taylor B. A., “Discrete Sufficient Sets for Some Spaces of Entire Functions”, Trans. Amer. Math. Soc., 163 (1972), 207–214 | DOI | MR | Zbl

[16] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 325–355 | MR | Zbl

[17] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi matem. nauk, 36:1 (1981), 73–126 | MR | Zbl

[18] Korobeinik Yu. F., “K voprosu o predstavlyayuschikh sistemakh”, Aktualnye voprosy matem. analiza, Rostovsk. un-t, 1978, 100–111 | MR

[19] Morzhakov V. V., Absolyutno predstavlyayuschie sistemy eksponent v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh, dep. v VINITI, No 245-81 Dep., RZhMatem., 4B 109 Dep., 1981, 30 pp. | Zbl

[20] Morzhakov V. V., Madaminov M. S., Absolyutno predstavlyayuschie sistemy eksponent v prostranstve beskonechno differentsiruemykh v $R^n$ funktsii, dep. v VINITI, No 3593-81 Dep., RZhMatem., 12B 702 Dep., 1981, 17 pp. | Zbl

[21] Morzhakov V. V., Saakyan G. R., Slabo dostatochnye mnozhestva v nekotorykh prostranstvakh tselykh funktsii eksponentsialnogo tipa, dep. v VINITI, No 3416 Dep., RZhMatem., 11B 204 Dep., 1983, 34 pp.

[22] Abanin A. V., Nekotorye predstavlyayuschie sistemy v $\rho$-vypuklykh oblastyakh, dep. v VINITI, No 2571-79 Dep., RZhMatem., 10B 197 Dep., 1979, 46 pp. | Zbl

[23] Abanin A. V., “Predstavlyayuschie sistemy v $\rho$-vypuklykh oblastyakh”, Izv. SKNTsVSh, ser. estestv. nauk, 1980, no. 4, 3–5 | MR | Zbl

[24] Abanin A. V., Ob odnom svoistve absolyutno predstavlyayuschikh sistem Mittag-Lefflera, poleznom pri postroenii universalnykh sistem, dep. v VINITI, No 4264-83 Dep., RZhMatem., 11B 190 Dep., 1983, 33 pp. | MR

[25] Shraifel I. S., Postroenie tselykh funktsii s polozhitelnym indikatorom i prilozheniya k predstavlyayuschim sistemam i dostatochnym mnozhestvam, dep. v VINITI, No 1141-84, RZhMatem., 6B 189, 1984, 43 pp.

[26] Napalkov V. V., “O diskretnykh dostatochnykh mnozhestvakh v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 250:4 (1980), 809–812 | MR | Zbl

[27] Napalkov V. V., “O diskretnykh slabo dostatochnykh mnozhestvakh v nekotorykh prostranstvakh tselykh funktsii”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1088–1099 | MR | Zbl

[28] Napalkov V. V., Sekerin A. B., “Slabo dostatochnye mnozhestva i predstavlenie analiticheskikh funktsii mnogikh kompleksnykh peremennykh ryadami Dirikhle”, Dokl. AN SSSR, 260:3 (1981), 535–539 | MR | Zbl

[29] Ulina G. V. (ed.), Voprosy approksimatsii funktsii kompleksnogo peremennogo, Ufa, 1980, 145 pp.

[30] Voprosy approksimatsii funktsii kompleksnogo peremennogo, Ufa, 1982

[31] Voprosy approksimatsii funktsii veschestvennogo i kompleksnogo peremennogo, Ufa, 1983

[32] Bierstedt K. D., Meise R., Summers W. H., “A Projective Description of Weighted Inductive Limits”, Trans. Amer. Math. Soc., 272:1 (1982), 107–161 | DOI | MR