Analogues of the objects of Lie group theory for nonlinear Poisson brackets
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 497-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

For general degenerate Poisson brackets, analogues are constructed of invariant vector fields, invariant forms, Haar measure and adjoint representation. A pseudogroup operation is defined that corresponds to nonlinear Poisson brackets, and analogues are obtained for the three classical theorems of Lie. The problem of constructing global pseudogroups is examined. Bibliography: 49 titles.
@article{IM2_1987_28_3_a3,
     author = {M. V. Karasev},
     title = {Analogues of the objects of {Lie} group theory for nonlinear {Poisson} brackets},
     journal = {Izvestiya. Mathematics },
     pages = {497--527},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a3/}
}
TY  - JOUR
AU  - M. V. Karasev
TI  - Analogues of the objects of Lie group theory for nonlinear Poisson brackets
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 497
EP  - 527
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a3/
LA  - en
ID  - IM2_1987_28_3_a3
ER  - 
%0 Journal Article
%A M. V. Karasev
%T Analogues of the objects of Lie group theory for nonlinear Poisson brackets
%J Izvestiya. Mathematics 
%D 1987
%P 497-527
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a3/
%G en
%F IM2_1987_28_3_a3
M. V. Karasev. Analogues of the objects of Lie group theory for nonlinear Poisson brackets. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 497-527. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a3/

[1] Lie S., “Theorie der Transformationsgruppen. I”, Math. Ann., 16:4 (1880), 441–528 | DOI | MR

[2] Dirak P., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[3] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., “Lokalnye gamiltoniany dlya integriruemykh kvantovykh modelei na reshetke”, TMF, 57:2 (1983), 163–181 | MR

[4] Vinogradov A. M., Krasilschik I. S., “Chto takoe gamiltonov formalizm?”, Uspekhi matem. nauk, 30:1 (1975), 173–198 | MR | Zbl

[5] Kirillov A. A., “Lokalnye algebry Li”, Uspekhi matem. nauk, 31:4 (1976), 57–76 | MR | Zbl

[6] Lichnerowicz A., “Les varieties de Poisson et leurs algebres de Lie associees”, Diff. Geom., 12:2 (1977), 253–299 | MR

[7] Maslov V. P., “Primenenie metoda uporyadochennykh operatorov dlya polucheniya tochnykh reshenii”, TMF, 33:2 (1977), 185–209 | MR | Zbl

[8] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, Uspekhi matem. nauk, 37:5 (1982), 3–49 | MR | Zbl

[9] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[10] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. Predstavleniya kvantovoi algebry”, Funkts. analiz i ego prilozh., 17:4 (1983), 34–48 | MR | Zbl

[11] Drinfeld V. G., “Gamiltonovy struktury na gruppakh Li, bialgebry Li i geometricheskii smysl klassicheskikh uravnenii Yanga–Bakstera”, Dokl. AN SSSR, 268:2 (1983), 285–287 | MR

[12] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa?”, Funkts. analiz i ego prilozh., 17:4 (1983), 17–33 | MR

[13] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[14] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, MGU, M., 1967

[15] Delsarte J., “Sur une extension de la formule de Taylor”, J. Math. Pure Appl., 17 (1938), 213–230

[16] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[17] Maslov V. P., Nazaikinskii V. E., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. I. Psevdodifferentsialnye uravneniya s rastuschimi koeffitsientami”, Sovr. probl. matem., 13, VINITI, M., 1979, 5–144

[18] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Sovr. probl. matem., 13, VINITI, M., 1979, 145–267 | MR

[19] Kapacev M. V., “Operatory regulyarnogo predstavleniya dlya odnogo klassa nelievskikh perestanovochnykh sootnoshenii”, Funkts. analiz i ego prilozh., 13:3 (1979), 91–92 | MR

[20] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd. MGU, M., 1965

[21] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[22] Kapacev M. V., Maslov V. P., “Globalnye asimptoticheskie operatory regulyarnogo predstavleniya”, Dokl. AN SSSR, 257:1 (1981), 33–38 | MR

[23] Kapacev M. V., Usloviya kvantovaniya Maslova v vysshikh kogomologiyakh i analogi ob'ektov teorii Li dlya kanonicheskikh rassloenii simplekticheskikh mnogoobrazii, dep. v VINITI, No 1092-82, 1093-82 Dep., MIEM, M., 1981, 64 pp.

[24] Berezin F. A., “Neskolko zamechanii ob assotsiativnoi obolochke algebry Li”, Funkts. analiz i ego prilozh., 1:2 (1967), 1–14 | MR | Zbl

[25] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[26] Anderson R. F. V., “On the Weyl functional calculus”, J. Funct. Anal., 4:2 (1969), 240–267 | DOI | MR | Zbl

[27] Kapacev M. V., “O veilevskom i uporyadochennom ischislenii nekommutiruyuschikh operatorov”, Matem. zametki, 26:6 (1979), 885–907 | MR

[28] Agrachev A. A., Gamkrelidze R. V., “Eksponentsialnoe predstavlenie potokov i khronologicheskoe ischislenie”, Matem. sb., 107:4 (1978), 467–532 | MR | Zbl

[29] Ovsyannikov L. V., “Abstraktnaya forma teoremy Koshi–Kovalevskoi i ee prilozheniya”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. konf. po differentsialnym uravneniyam i vychislitelnoi matematike, Novosibirsk, 1978; Новосибриск, 1980, 88–94 | MR | Zbl

[30] Kobayashi O., Yoshioka A., Maeda Y., Omori H., “The theory of infinite-dimensional Lie groups and its applications”, Acta Appl. Math., 3 (1985), 71–106 | DOI | MR | Zbl

[31] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Repts Math. Phys., 5:1 (1974), 121–131 | DOI | MR

[32] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[33] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[34] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Comm. Pure Appl. Math., 31 (1978), 481–507 | DOI | MR | Zbl

[35] Nekhoroshev H. N., “Peremennye deistvie-ugol i ikh obobschenie”, Tr. Mosk. matem. ob-va, 26, 1972, 181–198 | Zbl

[36] Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Ann. Math. Stud., 99, Princeton University Press, Princeton, NJ, 1981, 161 pp. | MR | Zbl

[37] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[38] Golo V. L., “Nonlinear regimes in superfluid $^3He$”, Lett. Math. Phys., 5 (1981), 155–159 | DOI | MR

[39] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[40] Semenov-Tian-Shansky M. A., “Dressing transformation and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21:6 (1985), 1237–1260 | DOI | MR

[41] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18:3 (1983), 523–557 | MR | Zbl

[42] Kapacev M. V., Maslov V. P., “Asimptoticheskoe i geometricheskoe kvantovanie”, Uspekhi matem. nauk, 39:6 (1984), 115–173 | MR

[43] Kapacev M. V., “Asimptoticheskii spektr i front ostsillyatsii dlya operatorov s nelineinymi kommutatsionnymi sootnosheniyami”, Dokl. AN SSSR, 243:1 (1978), 15–18 | MR

[44] Kapacev M. V., “Asimptotika spektra smeshannykh sostoyanii dlya uravnenii samosoglasovannogo polya”, TMF, 61:1 (1984), 118–127 | MR

[45] Kapacev M. V., Kvantovanie nelineinykh skobok Li–Puassona v kvaziklassicheskom priblizhenii, Preprint ITF-85-72R, ITF, Kiev, 1985, 36 pp.

[46] Kapacev M. V., “Puassonovskie algebry simmetrii i asimptotika spektralnykh serii”, Funkts. analiz i ego prilozh., 20:1 (1986), 21–32 | MR

[47] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1986 | MR

[48] Hahn P., “Haar measure for measure groupoids”, Trans. Amer. Math. Soc., 242:1 (1978), 1–33 | DOI | MR | Zbl

[49] Renault J., A groupoid approach to $C^*$-algebras, Lect. Notes in Math., 793, 1980, 160 pp. | MR | Zbl