Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 445-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing a commuting pair of differential operators in terms of its Burchnall–Chaundy curve and the holomorphic bundle over it is considered. A characteristic of the matrix case is the occurrence of vector rank, a bundle having various dimensions over various components of the Burchnall–Chaundy curve. A complete, independent system which determines the pair of operators uniquely is chosen. In the last section, a proof is given of S. P. Novikov's criterion for an operator with periodic coefficients to be an operator of a nontrivial commuting pair. Bibliography: 25 titles.
@article{IM2_1987_28_3_a1,
     author = {P. G. Grinevich},
     title = {Vector rank of commuting matrix differential operators. {Proof} of {S.\,P.~Novikov's} criterion},
     journal = {Izvestiya. Mathematics },
     pages = {445--465},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
TI  - Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 445
EP  - 465
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/
LA  - en
ID  - IM2_1987_28_3_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%T Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
%J Izvestiya. Mathematics 
%D 1987
%P 445-465
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/
%G en
%F IM2_1987_28_3_a1
P. G. Grinevich. Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 445-465. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/

[1] Ains E. L., Obyknovennye differentsialnye uravneniya, Gos. nauchno-tekhnicheskoe izdatelstvo Ukrainy, Kharkov, 1939

[2] Baker H. F., “Note on the foregoing paper “Commutative ordinary differential operators””, Proc. Royal. Soc. London, 118 (1928), 584–593 | DOI | Zbl

[3] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators. I”, Proc. Royal Soc. London, 21 (1922), 420–440

[4] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators. II”, Proc. Royal Soc. London, 118 (1928), 557–583 | DOI | Zbl

[5] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matem. nauk, XXXI:1 (1976), 55–136 | MR

[6] S. P. Novikov (ed.), Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[7] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi matem. nauk, 36:2 (1981), 11–80 | MR | Zbl

[8] Krichever I. M., “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl

[9] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego prilozh., 11:1 (1977), 15–31 | Zbl

[10] Krichever I. M., “Algebraicheskie krivye i kommutiruyuschie matrichnye differentsialnye operatory”, Funkts. analiz i ego prilozh., 10:2 (1976), 75–77 | MR

[11] Krichever I. M., “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego prilozh., 12:3 (1978), 20–31 | MR | Zbl

[12] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya i nelineinye uravneniya. Konechnozonnye resheniya ranga 2”, Dokl. AN SSSR, 247:1 (1979), 33–36 | MR

[13] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, Uspekhi matem. nauk, 35:6 (1980), 47–68 | MR | Zbl

[14] Dehornoy P., “Operateurs differentiels et courbes elliptiques”, Composito mathematica, 43:1 (1981), 71–99 | MR | Zbl

[15] Mokhov O. I., “Kommutiruyuschie obyknovennye differentsialnye operatory ranga 3, otvechayuschie ellipticheskoi krivoi”, Uspekhi matem. nauk, 37:4 (1982), 169–170 | MR | Zbl

[16] Grinevich P. G., “Ratsionalnye resheniya uravnenii kommutatsii differentsialnykh operatorov”, Funkts. analiz i ego prilozh., 16:1 (1982), 19–24 | MR | Zbl

[17] Novikov S. P., “Kommutiruyuschie operatory ranga $l>1$ s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 263:6 (1982), 1311–1314 | MR | Zbl

[18] Novikov S. P., “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, 1983, 3–32 | MR

[19] Novikov S. P., Grinevich P. G., “O spektralnoi teorii kommutiruyuschikh operatorov ranga 2 s periodicheskimi koeffitsientami”, Funkts. analiz i ego prilozh., 16:1 (1982), 25–26 | MR | Zbl

[20] Dubrovin B. A., “Matrichnye konechnozonnye operatory”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, 1983, 33–78 | MR

[21] Drinfeld V. G., “O kommutativnykh podkoltsakh nekotorykh nekommutativnykh kolets”, Funkts. analiz i ego prilozh., 11:1 (1977), 15–31 | MR

[22] Koppelman W., “Singular integral equations, boundary value problem and Rieman–Roch theorem”, Math. and Mech., 10:2 (1961), 247–277 | MR | Zbl

[23] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[24] Naimark M. L., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[25] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960