Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 445-465

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing a commuting pair of differential operators in terms of its Burchnall–Chaundy curve and the holomorphic bundle over it is considered. A characteristic of the matrix case is the occurrence of vector rank, a bundle having various dimensions over various components of the Burchnall–Chaundy curve. A complete, independent system which determines the pair of operators uniquely is chosen. In the last section, a proof is given of S. P. Novikov's criterion for an operator with periodic coefficients to be an operator of a nontrivial commuting pair. Bibliography: 25 titles.
@article{IM2_1987_28_3_a1,
     author = {P. G. Grinevich},
     title = {Vector rank of commuting matrix differential operators. {Proof} of {S.\,P.~Novikov's} criterion},
     journal = {Izvestiya. Mathematics },
     pages = {445--465},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
TI  - Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 445
EP  - 465
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/
LA  - en
ID  - IM2_1987_28_3_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%T Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
%J Izvestiya. Mathematics 
%D 1987
%P 445-465
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/
%G en
%F IM2_1987_28_3_a1
P. G. Grinevich. Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion. Izvestiya. Mathematics , Tome 28 (1987) no. 3, pp. 445-465. http://geodesic.mathdoc.fr/item/IM2_1987_28_3_a1/