The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevskii space of large dimension
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 401-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved: There are no discrete groups generated by reflections with fundamental polyhedron of finite volume in Lobachevskii space of dimension $995$. Bibliography: 8 titles.
@article{IM2_1987_28_2_a6,
     author = {M. N. Prokhorov},
     title = {The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in {Lobachevskii} space of large dimension},
     journal = {Izvestiya. Mathematics },
     pages = {401--411},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a6/}
}
TY  - JOUR
AU  - M. N. Prokhorov
TI  - The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevskii space of large dimension
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 401
EP  - 411
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a6/
LA  - en
ID  - IM2_1987_28_2_a6
ER  - 
%0 Journal Article
%A M. N. Prokhorov
%T The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevskii space of large dimension
%J Izvestiya. Mathematics 
%D 1987
%P 401-411
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a6/
%G en
%F IM2_1987_28_2_a6
M. N. Prokhorov. The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevskii space of large dimension. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 401-411. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a6/

[1] Burbaki N., Gruppy i algebry Li, gl. IV-VI, Mir, M., 1972 | MR | Zbl

[2] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami v prostranstvakh Lobachevskogo”, Matem. sb., 72 (1967), 471–488 | MR | Zbl

[3] Vinberg E. B., “Ob unimodulyarnykh tselochislennykh kvadratichnykh formakh”, Funkts. analiz i ego prilozh., 6 (1972), 25–32 | MR

[4] Vinberg E. B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. Mosk. matem. o-va, 47, 1984, 68–102 | MR | Zbl

[5] Nikulin V. V., “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 | MR | Zbl

[6] Nikulin V. V., “O faktor-gruppakh grupp avtomorfizmov giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami. Algebro-geometricheskie prilozheniya”, Sovremennye problemy matematiki, 18, VINITI, 1981, 3–114 | MR

[7] Khovanskii L. G., “Giperploskie secheniya mnogogrannikov, toricheskie mnogoobraziya i diskretnye gruppy v prostranstve Lobachevskogo”, Funkts. analiz i ego prilozh., 20:1 (1986), 50–61 | MR

[8] Lannér F., “On complexes with transitive groups of automorphism”, Comm. Sém. Math. Univ. Lund., 11 (1950), 1–71 | MR