Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for almost all hyperbolic operators with constant coefficients analytic sharpness of the fundamental solution everywhere is equivalent to the local Petrovskii condition. In the proximity of simple ($O$-modal) singularities of wave front sets the author finds all domains from one side of which there is sharpness. Bibliography: 24 titles.
@article{IM2_1987_28_2_a1,
     author = {V. A. Vassiliev},
     title = {Sharpness and the local {Petrovskii} condition for strictly hyperbolic operators with constant coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {233--273},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 233
EP  - 273
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/
LA  - en
ID  - IM2_1987_28_2_a1
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
%J Izvestiya. Mathematics 
%D 1987
%P 233-273
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/
%G en
%F IM2_1987_28_2_a1
V. A. Vassiliev. Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/

[1] Atya M. F., Bott R., Gording L., “Lakuny dlya giperbolicheskikh differentsialnykh operatorov s postoyannymi koeffitsientami. I”, Uspekhi matem. nauk, 26:2 (1971), 25–100 | MR

[2] Atya M. F., Bott R., Gording L., “Lakuny dlya giperbolicheskikh differentsialnykh operatorov s postoyannymi koeffitsientami. II”, Uspekhi matem. nauk, 39:3 (1984), 171–224 | MR

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[4] Gording L., “Rezkie fronty parnykh ostsilliruyuschikh integralov”, Uspekhi matem. nauk, 38:6 (1983), 85–96 | MR

[5] Petrovskii I. G., “O diffuzii voln i lakunakh dlya giperbolicheskikh uravnenii”, Matem. sb., 17(59):3 (1945), 289–370 | MR

[6] Petrovskii I. G., “O diffuzii voln i lakunakh dlya sistem giperbolicheskikh uravnenii”, Izv. AN SSSR. Ser. matem., 8:3 (1944), 101–106 | MR | Zbl

[7] Davydova A. M., Dostatochnoe uslovie otsutstviya lakuny dlya differentsialnogo uravneniya v chastnykh proizvodnykh giperbolicheskogo tipa, Dissertatsiya na soiskanie uch. st. kand. f.-m. nauk, M., 1945, 43 pp.

[8] Borovikov V. A., “Fundamentalnye resheniya lineinykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Tr. Mosk. matem. o-va, 8, 1959, 199–257 | MR

[9] Vasilev V. A., “Lokalnoe uslovie Petrovskogo i teoriya Pikara–Lefshetsa”, Uspekhi matem. nauk, 39:2 (1984), 219–220 | MR

[10] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[11] Gusein-Zade S. M., “Gruppy monodromii izolirovannykh osobennostei giperpoverkhnostei”, Uspekhi matem. nauk, 32:2 (1977), 23–65 | MR | Zbl

[12] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek”, Funkts. analiz i ego prilozh., 6:4 (1972), 3–25 | MR

[13] Briskorn E., “Monodromiya izolirovannykh osobennostei giperpoverkhnostei. Dobavlenie”, Matematika, 15:4 (1971), 156–160

[14] Gabrielov A. M., “Matritsy peresechenii dlya nekotorykh osobennostei”, Funkts. analiz i ego prilozh., 7:3 (1973), 18–32 | MR | Zbl

[15] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[16] Varchenko A. N., “Teoremy topologicheskoi ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii i polinomialnykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 957–1019 | MR | Zbl

[17] Gabrielov A. M., “Bifurkatsii, diagrammy Dynkina i modalnost izolirovannykh osobennostei”, Funkts. analiz i ego prilozh., 8:2 (1974), 7–12 | MR | Zbl

[18] Looijenga E., “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23:2 (1974), 105–116 | DOI | MR | Zbl

[19] Gusein-Zade S. M., “Matritsy peresechenii dlya nekotorykh osobennostei funktsii dvukh peremennykh”, Funkts. analiz i ego prilozh., 8:1 (1974), 11–15 | MR | Zbl

[20] A'Campo N., “Le groupe de monodromie du déploiement des singularites isolées de courbes planes. I”, Mathematische Annalen, 213:1 (1975), 1–32 | DOI | MR

[21] A'Campo N., “Le groupe de monodromie du déploiement des singularites isolées de courbes planes. II”, Actes du Conores Internationale des Mathematiciens (Vancouver, 1974), 1, no. 1, 1975, 395–404 | MR

[22] Lyashko O. V., “Raspadeniya prostykh osobennostei funktsii”, Funkts. analiz i ego prilozh., 10:2 (1976), 49–56 | Zbl

[23] Looijenga E., “The discriminant of a real simple singularity”, Compositio Math., 37:1 (1978), 51–62 | MR | Zbl

[24] Arnold V. P., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. II, Nauka, M., 1984 | MR