Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for almost all hyperbolic operators with constant coefficients analytic sharpness of the fundamental solution everywhere is equivalent to the local Petrovskii condition. In the proximity of simple ($O$-modal) singularities of wave front sets the author finds all domains from one side of which there is sharpness. Bibliography: 24 titles.
@article{IM2_1987_28_2_a1,
     author = {V. A. Vassiliev},
     title = {Sharpness and the local {Petrovskii} condition for strictly hyperbolic operators with constant coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {233--273},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 233
EP  - 273
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/
LA  - en
ID  - IM2_1987_28_2_a1
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
%J Izvestiya. Mathematics 
%D 1987
%P 233-273
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/
%G en
%F IM2_1987_28_2_a1
V. A. Vassiliev. Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/