Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for almost all hyperbolic operators with constant coefficients analytic sharpness of the fundamental solution everywhere is equivalent to the local Petrovskii condition. In the proximity of simple ($O$-modal) singularities of wave front sets the author finds all domains from one side of which there is sharpness.
Bibliography: 24 titles.
@article{IM2_1987_28_2_a1,
author = {V. A. Vassiliev},
title = {Sharpness and the local {Petrovskii} condition for strictly hyperbolic operators with constant coefficients},
journal = {Izvestiya. Mathematics },
pages = {233--273},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/}
}
TY - JOUR AU - V. A. Vassiliev TI - Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients JO - Izvestiya. Mathematics PY - 1987 SP - 233 EP - 273 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/ LA - en ID - IM2_1987_28_2_a1 ER -
V. A. Vassiliev. Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 233-273. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a1/