An estimate of the probability that a~degenerate diffusion process hits a~set of positive measure
Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 201-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Krylov–Safonov estimate for the probability that a nondegenerate diffusion process hits a set of positive measure is extended to the case of a process with degeneration. Using this estimate it is proved that the corresponding Markov process is strong Markov. Bibliography: 16 titles.
@article{IM2_1987_28_2_a0,
     author = {S. V. Anulova},
     title = {An estimate of the probability that a~degenerate diffusion process hits a~set of positive measure},
     journal = {Izvestiya. Mathematics },
     pages = {201--231},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a0/}
}
TY  - JOUR
AU  - S. V. Anulova
TI  - An estimate of the probability that a~degenerate diffusion process hits a~set of positive measure
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 201
EP  - 231
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a0/
LA  - en
ID  - IM2_1987_28_2_a0
ER  - 
%0 Journal Article
%A S. V. Anulova
%T An estimate of the probability that a~degenerate diffusion process hits a~set of positive measure
%J Izvestiya. Mathematics 
%D 1987
%P 201-231
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a0/
%G en
%F IM2_1987_28_2_a0
S. V. Anulova. An estimate of the probability that a~degenerate diffusion process hits a~set of positive measure. Izvestiya. Mathematics , Tome 28 (1987) no. 2, pp. 201-231. http://geodesic.mathdoc.fr/item/IM2_1987_28_2_a0/

[1] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izvestiya AN SSSR. Ser. matem., 44:1 (1980), 161–175 | MR | Zbl

[2] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya”, Izvestiya AN SSSR. Ser. matem., 46:3 (1982), 487–523 | MR

[3] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izvestiya AN SSSR. Ser. matem., 47:1 (1983), 75–108 | MR | Zbl

[4] Krylov N. V., Safonov M. V., “Otsenka veroyatnosti popadaniya diffuzionnogo protsessa v mnozhestvo polozhitelnoi mery”, Dokl. AN SSSR, 245:1 (1979), 18–20 | MR

[5] Portenko N. A., Obobschennye diffuzionnye protsessy, Naukova dumka, Kiev, 1982 | MR | Zbl

[6] Anulova S. V., “Diffuzionnye protsessy: razryvnye koeffitsienty, vyrozhdayuschayasya diffuziya, randomizirovannyi snos”, Dokl. AN SSSR, 260:5 (1981), 1036–1039 | MR

[7] Meier P. A., Veroyatnost i potentsialy, Mir, M., 1973

[8] Stroock D., Varadhan S., Multidimensional diffusion processes, Berlin, Heidelberg, New York, 1979 | MR

[9] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Zap. nauchn. seminarov Leningr. otd. Matem. in-ta AN SSSR, 96, 1980, 272–287 | MR | Zbl

[10] Khalmosh P., Teoriya mery, IL, M., 1953

[11] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1973

[12] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[13] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[14] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[15] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[16] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, t. 2, Nauka, M., 1973 | MR