Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1987_28_1_a9, author = {Yu. I. Manin and Ho\`ang L\^e Minh}, title = {The {Radon--Penrose} transformation for the group~$SO(8)$, and instantons}, journal = {Izvestiya. Mathematics }, pages = {189--200}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {1987}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a9/} }
Yu. I. Manin; Hoàng Lê Minh. The Radon--Penrose transformation for the group~$SO(8)$, and instantons. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 189-200. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a9/
[1] Atiyah M. F., Ward R. S., “Instantons and algebraic geometry”, Comm. Math. Phys., 55 (1977), 117–124 | DOI | MR | Zbl
[2] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemanniam geometry”, Proc. R. Soc. Lond. A., 362 (1978), 425–461 | DOI | MR | Zbl
[3] Henkin G. M., Manin Yu. I., “Twistor description of classical Yang–Mills–Diracfields”, Phys. Lett., 95B:34 (1980), 405–408 | MR
[4] Eastwood M. G., Penrose R., Wells R. O., “Cohomology and massless fields”, Comm. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl
[5] Drinfeld V. G., Manin Yu. I., “Instantony i puchki na $\mathbf C\mathbf P^3$”, Funkts. analiz i ego prilozh., 13:2 (1979), 59–74 | MR
[6] Beilinson A. A, Gelfand S. I., Manin Yu. I., “Instanton opredelyaetsya svoimi kompleksnymi osobennostyami”, Funkts. analiz i ego prilozh., 14:2 (1980), 48–49 | MR | Zbl
[7] Adams J. E., “Spin (8), triality, $F_4$ and all that”, Superspace and Supergravity, Cambridge Univ. Press, 1981, 435–445