On a~generalization of canonical quantization
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 175-188

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of Mackey's generalized quantization based on the concept of an imprimitivity system. Let $G$ be a topological group (symmetry group) acting continuously on a transitive $G$-space $X$ (the configuration space of a classical system). The structure of generalized imprimitivity systems is investigated in two cases: for a compact $G$ and for $G=X$ a locally compact type I group (for separable $G$ and Hilbert space $\mathscr H$ in which $G$ has a continuous unitary representation). Bibliography: 23 titles.
@article{IM2_1987_28_1_a8,
     author = {A. S. Kholevo},
     title = {On a~generalization of canonical quantization},
     journal = {Izvestiya. Mathematics },
     pages = {175--188},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/}
}
TY  - JOUR
AU  - A. S. Kholevo
TI  - On a~generalization of canonical quantization
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 175
EP  - 188
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/
LA  - en
ID  - IM2_1987_28_1_a8
ER  - 
%0 Journal Article
%A A. S. Kholevo
%T On a~generalization of canonical quantization
%J Izvestiya. Mathematics 
%D 1987
%P 175-188
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/
%G en
%F IM2_1987_28_1_a8
A. S. Kholevo. On a~generalization of canonical quantization. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 175-188. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/