On a~generalization of canonical quantization
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 175-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of Mackey's generalized quantization based on the concept of an imprimitivity system. Let $G$ be a topological group (symmetry group) acting continuously on a transitive $G$-space $X$ (the configuration space of a classical system). The structure of generalized imprimitivity systems is investigated in two cases: for a compact $G$ and for $G=X$ a locally compact type I group (for separable $G$ and Hilbert space $\mathscr H$ in which $G$ has a continuous unitary representation). Bibliography: 23 titles.
@article{IM2_1987_28_1_a8,
     author = {A. S. Kholevo},
     title = {On a~generalization of canonical quantization},
     journal = {Izvestiya. Mathematics },
     pages = {175--188},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/}
}
TY  - JOUR
AU  - A. S. Kholevo
TI  - On a~generalization of canonical quantization
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 175
EP  - 188
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/
LA  - en
ID  - IM2_1987_28_1_a8
ER  - 
%0 Journal Article
%A A. S. Kholevo
%T On a~generalization of canonical quantization
%J Izvestiya. Mathematics 
%D 1987
%P 175-188
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/
%G en
%F IM2_1987_28_1_a8
A. S. Kholevo. On a~generalization of canonical quantization. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 175-188. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a8/

[1] Mackey G. W., “Imprimitivity for representations of locally compact groups”, Proc. Natl. Acad. Sci. USA, 35:4 (1949), 537–545 | DOI | MR | Zbl

[2] Mackey G. W., Unitary group representations in physics, probability and guantum theory, Benjamin, London, 1978 | Zbl

[3] Wightman A. S., “On the localizability of quantum mechanical systems”, Rev. Mod. Phys., 34 (1962), 845–872 | DOI | MR

[4] Jauch J. M., Piron C., “Generalized localizability”, Helv. Phys. Acta, 45 (1967), 559–570

[5] Barut A. O., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, t. 2, Mir, M., 1980 | Zbl

[6] Holevo A. S., “Estimation of shift parameter of a quantum state”, Rept. Math. Phys., 13:3 (1978), 287–307 | DOI | MR

[7] Kholevo A. S., Veroyatnostnoe i statisticheskie aspekty kvantovoi teorii, Hayka, M., 1980 | MR

[8] Neumann H., “Transformation properties of observables”, Helv. Phys. Acta, 45:5 (1972), 811–819 | MR

[9] Kraus K., “Position observables of the photon”, The uncertainty principle and foundations of quantum mechanics, eds. W. C. Price, S. S. Chissick, J. Wiley A Sons, London, 1977 | Zbl

[10] Davies E. B., “On repeated measurements of continuous observables in quantum mechanics”, J. Funct. Anal., 6 (1970), 318–346 | DOI | MR

[11] Poulsen N. K. S., Regularity aspects of infinite dimensional representations of Lie groups, MIT D. Phil. Thesis, 1970 | Zbl

[12] Scutaru H., “Coherent states and induced representations”, Lett. Math. Phys., 2:2 (1977), 101–107 | DOI | MR | Zbl

[13] Cattaneo U., “On Mackey's imprimitivity theorem”, Commun. Math. Helv., 54:4 (1979), 629–641 | DOI | MR | Zbl

[14] Castrigiano D. P. L., Henrichs R. W., “Systems of covariance and subrepresentations of induced representations”, Lett. Math. Phys., 4 (1980), 169–175 | DOI | MR | Zbl

[15] Bogomolov H. A., Kholevo A. S., “Razlozheniya edinitsy, kovariantnye otnositelno predstavleniya abelevoi lokalno kompaktnoi gruppy”, Tr. NIVTs MGU, M., 1981, 45–59

[16] Kholevo A. S., “Obobschennye sistemy imprimitivnosti dlya abelevykh grupp”, Matematika, 2 (1983), 49–71 | MR | Zbl

[17] Holevo A. S., “Covariant measurements and imprimitivity systems”, Lecture Notes in Math., 1055 (1983), 153–172 | DOI | MR

[18] Perelomov A. M., “Obobschennye kogerentnye sostoyaniya i nekotorye ikh primeneniya”, UFN, 123:1 (1977), 23–53

[19] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[20] Kholevo A. S., Issledovaniya po obschei teorii statisticheskikh reshenii, Tr. Matem. in-ta im. V. A Steklova AN SSSR, 124, Nauka, M., 1976

[21] Burbaki N., Integrirovanie. Vektornoe integrirovanie. Mera Khaara. Svertka i predstavleniya, Nauka, M., 1970 | MR

[22] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, Nauka, L.,M., 1975

[23] Berberian S. K., Notes on spectral theory, Van Nostrand, N.Y., 1960 | MR