Noncompact absolute extensors in dimension~$n$, $n$-soft mappings, and their applications
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 151-174
Voir la notice de l'article provenant de la source Math-Net.Ru
$R$-compact absolute extensors in dimension $n$ ($AE(n)$) and $n$-soft mappings are defined and studied. Spectral characterizations are obtained not only for $AE(n)$-spaces but also for $n$-soft mappings themselves; this is new even in the compact case. The technique developed is applied to the study of certain questions of functional analysis and the theory of nonmetrizable manifolds modeled on topological vector spaces.
Bibliography: 27 titles.
@article{IM2_1987_28_1_a7,
author = {A. Ch. Chigogidze},
title = {Noncompact absolute extensors in dimension~$n$, $n$-soft mappings, and their applications},
journal = {Izvestiya. Mathematics },
pages = {151--174},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a7/}
}
TY - JOUR AU - A. Ch. Chigogidze TI - Noncompact absolute extensors in dimension~$n$, $n$-soft mappings, and their applications JO - Izvestiya. Mathematics PY - 1987 SP - 151 EP - 174 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a7/ LA - en ID - IM2_1987_28_1_a7 ER -
A. Ch. Chigogidze. Noncompact absolute extensors in dimension~$n$, $n$-soft mappings, and their applications. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 151-174. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a7/