Classification of periodic functions and the rate of convergence of their Fourier series
Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 99-132

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proposes a classification for periodic functions that is based on grouping them according to the rate at which their Fourier coefficients tend to zero. The classes $L_\beta^\psi\mathfrak N$ thereby introduced coincide, for fixed values of the defining parameters, with the known classes $W^r$, $W^rH_\omega$, $W_\beta^r$, $W_\beta^rH_\omega$, and the like. Such an approach permits the classification of a wide spectrum of periodic functions, including infinitely differentiable, analytic, and entire functions. The asymptotic behavior of the deviations of the Fourier sums in these classes is studied. The assertions obtained in this direction contain results known earlier on approximation by Fourier sums of classes of differentiable functions. Bibliography: 18 titles.
@article{IM2_1987_28_1_a5,
     author = {A. I. Stepanets},
     title = {Classification of periodic functions and the rate of convergence of their {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {99--132},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a5/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Classification of periodic functions and the rate of convergence of their Fourier series
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 99
EP  - 132
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a5/
LA  - en
ID  - IM2_1987_28_1_a5
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Classification of periodic functions and the rate of convergence of their Fourier series
%J Izvestiya. Mathematics 
%D 1987
%P 99-132
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a5/
%G en
%F IM2_1987_28_1_a5
A. I. Stepanets. Classification of periodic functions and the rate of convergence of their Fourier series. Izvestiya. Mathematics , Tome 28 (1987) no. 1, pp. 99-132. http://geodesic.mathdoc.fr/item/IM2_1987_28_1_a5/