Analytic pro-$p$-groups of rank~$3$ and closed pro-$p$-groups of type~$(3,4)$
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 593-599
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a pro-$p$-group of type $(3,4)$ that is closed (in the sense of Schur) with an elementary Abelian commutator-factor group is always finite for $p\geqslant7$. The proof uses the classification of analytic pro-$p$-groups of rank $3$.
Bibliography: 7 titles.
@article{IM2_1986_27_3_a8,
author = {I. V. Andozhskii and V. M. Tsvetkov},
title = {Analytic pro-$p$-groups of rank~$3$ and closed pro-$p$-groups of type~$(3,4)$},
journal = {Izvestiya. Mathematics },
pages = {593--599},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a8/}
}
TY - JOUR AU - I. V. Andozhskii AU - V. M. Tsvetkov TI - Analytic pro-$p$-groups of rank~$3$ and closed pro-$p$-groups of type~$(3,4)$ JO - Izvestiya. Mathematics PY - 1986 SP - 593 EP - 599 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a8/ LA - en ID - IM2_1986_27_3_a8 ER -
I. V. Andozhskii; V. M. Tsvetkov. Analytic pro-$p$-groups of rank~$3$ and closed pro-$p$-groups of type~$(3,4)$. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 593-599. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a8/