Homotopy theory of coalgebras
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 575-592

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper makes a study of operads and of coalgebras over operads. Certain operads $E_n$ and $E$ are defined, constituting the algebraic analogues of the "little $n$-cube" operads; it is then shown that the singular chain complex $C_*(X;R)$ of a topological space $X$ is a coalgebra over the operad $E$, and that this structure completely determines the weak homotopy type of the space. Bibliography: 26 titles.
@article{IM2_1986_27_3_a7,
     author = {V. A. Smirnov},
     title = {Homotopy theory of coalgebras},
     journal = {Izvestiya. Mathematics },
     pages = {575--592},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a7/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Homotopy theory of coalgebras
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 575
EP  - 592
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a7/
LA  - en
ID  - IM2_1986_27_3_a7
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Homotopy theory of coalgebras
%J Izvestiya. Mathematics 
%D 1986
%P 575-592
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a7/
%G en
%F IM2_1986_27_3_a7
V. A. Smirnov. Homotopy theory of coalgebras. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 575-592. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a7/