Spherical representation of solutions of invariant differential equations on a~Riemannian symmetric space of noncompact type
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 535-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the exponential representation is obtained for solutions of invariant differential equations on spaces of the type indicated in the title. Solutions are considered which transform according to finite-dimensional representations of a maximal compact subgroup of the group of motions. The case of equations on an associated space of zero curvature is also considered. Bibliography: 34 titles.
@article{IM2_1986_27_3_a5,
     author = {P. A. Kuchment},
     title = {Spherical representation of solutions of invariant differential equations on {a~Riemannian} symmetric space of noncompact type},
     journal = {Izvestiya. Mathematics },
     pages = {535--548},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a5/}
}
TY  - JOUR
AU  - P. A. Kuchment
TI  - Spherical representation of solutions of invariant differential equations on a~Riemannian symmetric space of noncompact type
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 535
EP  - 548
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a5/
LA  - en
ID  - IM2_1986_27_3_a5
ER  - 
%0 Journal Article
%A P. A. Kuchment
%T Spherical representation of solutions of invariant differential equations on a~Riemannian symmetric space of noncompact type
%J Izvestiya. Mathematics 
%D 1986
%P 535-548
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a5/
%G en
%F IM2_1986_27_3_a5
P. A. Kuchment. Spherical representation of solutions of invariant differential equations on a~Riemannian symmetric space of noncompact type. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 535-548. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a5/

[1] Ehrenpreis L., Fourier analysis in several complex variables, Wiley–Interscience, New York, 1970 | MR | Zbl

[2] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[3] Malgrange B., “Existence et approximation des solutions des équations aux dérivées partielles et equations de convolution”, Ann. Inst. Fourier, 6 (1956), 271–355 | MR | Zbl

[4] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[5] Berenstein C. A., Dostal M. A., Analytically uniform spaces and their applications to convolution equations, Lect. Not. Math., 256, Springer-Verlag, Berlin, 1972 | MR | Zbl

[6] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, VINITI, 1974, 199–412

[7] Litvinov G. L., Shpiz G. B., “Primarnye razlozheniya konechnomernykh predstavlenii algebr i grupp Li”, Funkts. analiz i ego prilozh., 12:2 (1978), 86–87 | MR | Zbl

[8] Kuchment P. A., “Predstavleniya reshenii invariantnykh differentsialnykh uravnenii na nekotorykh simmetricheskikh prostranstvakh”, Dokl. AN SSSR, 259:3 (1981), 532–535 | MR | Zbl

[9] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl

[10] Kuchment P. A., “Predstavleniya reshenii periodicheskikh differentsialnykh uravnenii v chastnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 782–809 | MR

[11] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[12] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[13] Zhelobenko D. P., “Garmonicheskii analiz na reduktivnykh gruppakh Li”, Itogi nauki i tekhniki. Matematicheskii analiz, 17, VINITI, 1979, 207–269 | MR

[14] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[15] Helgason S., “A duality for symmetric spaces with applications to group representations”, Adv. Math., 5:1 (1970), 1–154 | DOI | MR | Zbl

[16] Helgason S., “A duality for symmetric spaces with applications to group representations. II. Differential equations and eigenspace representations”, Adv. Math., 22 (1976), 187–219 | DOI | MR | Zbl

[17] Kashiwara M., Kowata A., Minemura K., Okamoto K., Oshima T., Tanaka M., “Eigenfunctions of invariant differential operators on a symmetric spaces”, Ann. Math., 107 (1978), 1–39 | DOI | MR | Zbl

[18] Helgason S., “Invariant differential equations on homogeneous manifolds”, Bull. Amer. Math. Soc., 83:5 (1977), 751–774 | DOI | MR | Zbl

[19] Helgason S., Analysis on Lie groups and homogeneous spaces, Conf. Board Math. Soc., AMS, 1972, 64 pp. | MR | Zbl

[20] Kostant B., “Suschestvovanie i neprivodimost nekotorykh serii predstavlenii”, Matematika, 14:2 (1970), 102–116 | Zbl

[21] Palamodov V. P., “Zamechanie ob eksponentsialnom predstavlenii reshenii differentsialnykh uravnenii s postoyannymi koeffitsientami”, Matem. sb., 76:3 (1968), 417–434 | MR | Zbl

[22] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[23] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[24] Helgason S., “A duality for symmetric spaces with applications to group representations. III. Tangent space analysis”, Adv. Math., 36:3 (1980), 297–323 | DOI | MR | Zbl

[25] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[26] Kuchment P. A., “O periodicheskikh v srednem funktsiyakh na simmetricheskikh prostranstvakh”, Funkts. analiz i ego prilozh., 16:3 (1982), 68–69 | MR | Zbl

[27] Gurevich D. I., “Kontrprimery k probleme L. Shvartsa”, Funkts. analiz i ego prilozh., 9:2 (1975), 29–35 | MR | Zbl

[28] Berenstein C. A., Taylor B. A., “Interpolation problems in $\mathbf C^n$ with applications to harmonic analysis”, J. Anal. Math., 38 (1980), 188–254 | MR | Zbl

[29] Berenstein C. A., Taylor B. A., “Mean-periodic functions”, Internat. J. Math. and Math. Sci., 3:2 (1980), 199–235 | DOI | MR | Zbl

[30] Atiyah M. F., Elliptic operators and compact groups, Lect. Not. Math., 401, Springer, Berlin, 1974 | MR | Zbl

[31] Ehrenpreis L., Mautner F., “Some properties of Fourier transform on semisimple Lie groups. I”, Ann. Math., 61:3 (1955), 406–439 ; “II”, Trans. Amer. Math. Soc., 84:1 (1957), 1–55 ; “III”, Trans. Amer. Math. Soc., 90:3 (1959), 431–484 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[32] Rashevskii P. K., “Opisanie zamknutykh invariantnykh podprostranstv v nekotorykh funktsionalnykh prostranstvakh”, Tr. Mosk. matem. ob-va, 38, 1979, 139–185 | MR

[33] Platonov S. S., “Invariantnye podprostranstva v nekotorykh funktsionalnykh prostranstvakh na gruppe $SL(2,\mathbf C)$”, Trudy seminara po vektornomu i tenzornomu analizu, v. 21, MGU, M., 1982, 191–258 | MR

[34] Khinkis L. A., K zadache ob invariantnykh podprostranstvakh v prostranstve funktsii na poluprostoi gruppe Li ranga 1, dep. v VINITI No 4980-83, Voronezhskii lesotekhnich. in-t, 1983, 39 pp.