On approximations of compact sets of functions by algebraic surfaces
Izvestiya. Mathematics, Tome 27 (1986) no. 3, pp. 521-533
Cet article a éte moissonné depuis la source Math-Net.Ru
This article deals with approximations of certain compact sets of smooth and analytic functions by families of functions depending in a polynomial fashion on parameters. The connection between the accuracy of the approximations of the compact sets by such families and the number of parameters and their degree is studied. Bibliography: 3 titles.
@article{IM2_1986_27_3_a4,
author = {S. N. Kudryavtsev},
title = {On~approximations of compact sets of functions by algebraic surfaces},
journal = {Izvestiya. Mathematics},
pages = {521--533},
year = {1986},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/}
}
S. N. Kudryavtsev. On approximations of compact sets of functions by algebraic surfaces. Izvestiya. Mathematics, Tome 27 (1986) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/
[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959
[2] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR
[3] Warren H. E., “A construction of certain nonlinear approximating families”, Proc. Amer. Math. Soc., 21:2 (1969), 467–470 | DOI | MR | Zbl