On~approximations of compact sets of functions by algebraic surfaces
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 521-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with approximations of certain compact sets of smooth and analytic functions by families of functions depending in a polynomial fashion on parameters. The connection between the accuracy of the approximations of the compact sets by such families and the number of parameters and their degree is studied. Bibliography: 3 titles.
@article{IM2_1986_27_3_a4,
     author = {S. N. Kudryavtsev},
     title = {On~approximations of compact sets of functions by algebraic surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {521--533},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - On~approximations of compact sets of functions by algebraic surfaces
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 521
EP  - 533
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/
LA  - en
ID  - IM2_1986_27_3_a4
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T On~approximations of compact sets of functions by algebraic surfaces
%J Izvestiya. Mathematics 
%D 1986
%P 521-533
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/
%G en
%F IM2_1986_27_3_a4
S. N. Kudryavtsev. On~approximations of compact sets of functions by algebraic surfaces. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a4/

[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959

[2] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR

[3] Warren H. E., “A construction of certain nonlinear approximating families”, Proc. Amer. Math. Soc., 21:2 (1969), 467–470 | DOI | MR | Zbl