Complete regularity of growth for some classes of entire functions of exponential type represented by Вorel integrals and power series
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 431-450

Voir la notice de l'article provenant de la source Math-Net.Ru

New tests are obtained for the regularity of growth of entire functions of exponential type that are represented as power series $F(z)=\sum_{n=0}^\infty\frac{a_n}{n!}z^n$ and Borel (Laplace) integrals $F(z)=\int_Lf(\tau)e^{z\tau}\,d\tau$. Bibliography: 16 titles.
@article{IM2_1986_27_3_a1,
     author = {N. V. Govorov and N. M. Chernykh},
     title = {Complete regularity of growth for some classes of entire functions of exponential type represented by {{\CYRV}orel} integrals and power series},
     journal = {Izvestiya. Mathematics },
     pages = {431--450},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a1/}
}
TY  - JOUR
AU  - N. V. Govorov
AU  - N. M. Chernykh
TI  - Complete regularity of growth for some classes of entire functions of exponential type represented by Вorel integrals and power series
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 431
EP  - 450
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a1/
LA  - en
ID  - IM2_1986_27_3_a1
ER  - 
%0 Journal Article
%A N. V. Govorov
%A N. M. Chernykh
%T Complete regularity of growth for some classes of entire functions of exponential type represented by Вorel integrals and power series
%J Izvestiya. Mathematics 
%D 1986
%P 431-450
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a1/
%G en
%F IM2_1986_27_3_a1
N. V. Govorov; N. M. Chernykh. Complete regularity of growth for some classes of entire functions of exponential type represented by Вorel integrals and power series. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 431-450. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a1/