On~modal logics axiomatizing provability
Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 401-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the concept of the trace of a modal logic, introduced earlier by the author, a classification of arithmetically complete modal logics is given. It is proved that, between the least and the greatest arithmetically complete logics, there are continuum many logics which are not arithmetically complete. Bibliography: 17 titles.
@article{IM2_1986_27_3_a0,
     author = {S. N. Artemov},
     title = {On~modal logics axiomatizing provability},
     journal = {Izvestiya. Mathematics },
     pages = {401--429},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a0/}
}
TY  - JOUR
AU  - S. N. Artemov
TI  - On~modal logics axiomatizing provability
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 401
EP  - 429
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a0/
LA  - en
ID  - IM2_1986_27_3_a0
ER  - 
%0 Journal Article
%A S. N. Artemov
%T On~modal logics axiomatizing provability
%J Izvestiya. Mathematics 
%D 1986
%P 401-429
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a0/
%G en
%F IM2_1986_27_3_a0
S. N. Artemov. On~modal logics axiomatizing provability. Izvestiya. Mathematics , Tome 27 (1986) no. 3, pp. 401-429. http://geodesic.mathdoc.fr/item/IM2_1986_27_3_a0/

[1] Boolos G., The Unprovability of Consistensy; An Essay in Modal Logic, Cambridge University Press, Cambridge, 1979 | MR | Zbl

[2] Artemov S. N., “Prilozheniya modalnoi logiki v teorii dokazatelstv”, Neklassicheskie logiki i ikh primenenie. Voprosy kibernetiki, Nauka, M., 1982, 3–22

[3] Solovay R. M., “Provability interpretations of modal logic”, Israel J. Math., 25 (1976), 287–304 | DOI | MR | Zbl

[4] Segerberg K., An essay in classical modal logic, Filosofiska studier, Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet, Uppsala, 1971 | MR | Zbl

[5] Artyomov S. N., “Extentions of arithmetics and connected with them modal theories”, VI Intern. Congress for Log. Math. and Phil. of Sci. (Gannover, 1979, Abstracts, Sections 1–4), 15–19

[6] Artemov S. N., “Arifmeticheski polnye modalnye teorii”, Semiotika i informatika, 14, VINITI, M., 1979–1980, 115–133 | MR

[7] Smorinskii K., “Teoremy o nepolnote”, Spravochnaya kniga po matematicheskoi logike, Nauka, M., 1983, 9–53

[8] Montagna F., “The Predicate Modal Logic of Provability”, Notre Dame J. Form. Log., 25:2 (1984), 179–189 | DOI | MR | Zbl

[9] Visser A., Aspects of diagonalization and provability, Ph. D. Thesis, Utrecht, 1981

[10] Gavrilenko Yu. V., “Modalnye logiki, svyazannye s vyvodimostyu v intuitsionistskoi arifmetike”, Avtomaty, algorifmy, yazyki, KGU, Kalinin, 1982, 14–16

[11] Macintyre A., Simmons H., “Gödel diagonalization technique and related properties of theories”, Colloquium Mathematicum, 28 (1973), 165–180 | MR | Zbl

[12] Rosser J. B., “Extentions of some theorems of Gödel and Church”, Journ. of Symbolic Logic, 1 (1936), 87–91 | DOI | Zbl

[13] Montagna F., “On diagonalizable algebra of Peano arithmetic”, Boll. della Unione Math. Italiana, 66-B (1979), 795–812 | MR

[14] Boolos G., “Extremely undecidable sentences”, Journ. of Symbolic Logic, 47 (1982), 191–196 | DOI | MR | Zbl

[15] Turing A. M., “Systems of logic based on ordinals”, Proc. London Math. Soc.(2), 45 (1939), 161–228 | DOI | Zbl

[16] Friedman H., “102 Problems in Mathematical Logic”, Journ. of Symbolic Logic, 40 (1972), 113–129 | DOI | MR

[17] Artemov S. N., “On modal representations of extensions of Peano arithmetic”, C. R. Math. Rep. Acad. Sci. Canada, VI:3 (1984), 129–132 | MR