On the function $G(n)$ in Waring's problem
Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 239-249

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a $p$-adic method, the author obtains a new estimate for the Hardy–Littlewood function $G(n)$: $G(n)2n\log n+2n\log\log n+12n$. Bibliography: 18 titles.
@article{IM2_1986_27_2_a2,
     author = {A. A. Karatsuba},
     title = {On the function $G(n)$ in {Waring's} problem},
     journal = {Izvestiya. Mathematics },
     pages = {239--249},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a2/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - On the function $G(n)$ in Waring's problem
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 239
EP  - 249
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a2/
LA  - en
ID  - IM2_1986_27_2_a2
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T On the function $G(n)$ in Waring's problem
%J Izvestiya. Mathematics 
%D 1986
%P 239-249
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a2/
%G en
%F IM2_1986_27_2_a2
A. A. Karatsuba. On the function $G(n)$ in Waring's problem. Izvestiya. Mathematics , Tome 27 (1986) no. 2, pp. 239-249. http://geodesic.mathdoc.fr/item/IM2_1986_27_2_a2/