Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 159-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with the study of involutions of integral symmetric bilinear forms, for a finite quadratic (symmetric bilinear) 2-form there is defined on the annihilator of 2 a filtration of finite quadratic (symmetric bilinear) forms. The image of the group of automorphisms of the 2-form in the group of automorphisms of the filtration is determined, and an analogue of Witt's theorem is proved for these groups. Bibliography: 15 titles.
@article{IM2_1986_27_1_a8,
     author = {V. V. Nikulin},
     title = {Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms},
     journal = {Izvestiya. Mathematics },
     pages = {159--182},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a8/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 159
EP  - 182
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a8/
LA  - en
ID  - IM2_1986_27_1_a8
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms
%J Izvestiya. Mathematics 
%D 1986
%P 159-182
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a8/
%G en
%F IM2_1986_27_1_a8
V. V. Nikulin. Filtrations of 2-elementary forms and involutions of integral symmetric and skew-symmetric bilinear forms. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 159-182. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a8/

[1] Arnold V. I., “Critical points of smooth functions”, Proc. Intern. Congress Math. Vancouver, 1974, 19–39 | MR

[2] Comessatti A., “Sulle varieta abeliane reali”, Annali Mat. Pura Appl., ser. 4, 2 (1925), 67–106 ; 3 (1926), 27–71 | DOI | MR | DOI | MR

[3] Eihler M., Quadratishe Formen und orthogonale Gruppen, Springer-Verlag, Berlin, 1952 | MR

[4] Jones B. W., “A canonical quadratic form for the ring of 2-adic integers”, Duke Math. J., 11 (1944), 715–727 | DOI | MR | Zbl

[5] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982, per. s angliiskogo | MR

[6] Kneser M., “Klassenzahlen indefiniter quadratische Formen in drei oder mehr Veranderlichen”, Arch. Math., 7:5 (1956), 323–332 | DOI | MR | Zbl

[7] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971, per. s angliiskogo | MR | Zbl

[8] Nikulin V. V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa $K3$”, Trudy Mosk. matem. o-va, 38 (1979), 73–137 | MR

[9] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl

[10] Nikulin V. V., “Involyutsii tselochislennykh kvadratichnykh form i ikh prilozheniya k veschestvennoi algebraicheskoi geometrii”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 109–188 | MR

[11] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl

[12] Kharlamov V. M., “Topologicheskie tipy neosobykh poverkhnostei stepeni 4 v $\mathbf R\mathbf P^3$”, Funkts. analiz i ego pril., 10:4 (1976), 55–68 | MR | Zbl

[13] Kharlamov V. M., “Izotopicheskie tipy neosobykh poverkhnostei stepeni 4 v $\mathbf R\mathbf P^3$”, Funkts. analiz i ego pril., 12:1 (1978), 86–87 | MR | Zbl

[14] Khodzh V., Pido D., Metody algebraicheskoi geometrii, t. 1–3, Inostr. liter., M., 1954–1955, per. s angliiskogo

[15] 17-ya Vsesoyuznaya algebraicheskaya konferentsiya. Tezisy soobschenii, ch. I, Minsk, 1983