Series in the system $\{f(nx)\}_{n=1}^\infty$
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 101-113
Voir la notice de l'article provenant de la source Math-Net.Ru
This article studies questions of convergence of operators commuting with ergodic endomorphisms, as well as convergence of function series of the form $\sum a_nf(nx)$, where $\{n\}_{n=1}^\infty$ is the sequence of positive integers, $x\in[0,1]$, and $f(x+1)=f(x)$, and series of the form $\sum a_nf(\tau^nx)$, where $\tau$ is an ergodic endomorphism of some algebra $G$, and $f\in L_2(G)$.
Bibliography: 13 titles.
@article{IM2_1986_27_1_a5,
author = {A. V. Kasyanchuk},
title = {Series in the system $\{f(nx)\}_{n=1}^\infty$},
journal = {Izvestiya. Mathematics },
pages = {101--113},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a5/}
}
A. V. Kasyanchuk. Series in the system $\{f(nx)\}_{n=1}^\infty$. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a5/