On the linearization of automorphisms of a~real analytic hypersurface
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 53-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that relative to certain normal coordinates any local automorphism of a nonspherical real-analytic hypersurface in $\mathbf C^3$ is a fractional-linear transformation. For a hypersurface in $\mathbf C^n$ a system of normal coordinates is constructed relative to which the entire stability group consists only of fractional-linear transformations. Bibliography: 13 titles.
@article{IM2_1986_27_1_a3,
     author = {V. V. Ezhov},
     title = {On the linearization of automorphisms of a~real analytic hypersurface},
     journal = {Izvestiya. Mathematics },
     pages = {53--84},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a3/}
}
TY  - JOUR
AU  - V. V. Ezhov
TI  - On the linearization of automorphisms of a~real analytic hypersurface
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 53
EP  - 84
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a3/
LA  - en
ID  - IM2_1986_27_1_a3
ER  - 
%0 Journal Article
%A V. V. Ezhov
%T On the linearization of automorphisms of a~real analytic hypersurface
%J Izvestiya. Mathematics 
%D 1986
%P 53-84
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a3/
%G en
%F IM2_1986_27_1_a3
V. V. Ezhov. On the linearization of automorphisms of a~real analytic hypersurface. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 53-84. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a3/

[1] Vitushkin A. G., “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, Uspekhi matem. nauk, 40:2 (1985), 3–31 | MR | Zbl

[2] Vitushkin A. G., “Golomorfnoe prodolzhenie otobrazhenii kompaktnykh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 620–645 | MR

[3] Bochner S., “Compact groups of differentiable transformations”, Ann. Math., 46:3 (1945), 372–381 | DOI | MR | Zbl

[4] Kruzhilin N. G., Loboda A. V., “Linearizatsiya lokalnykh avtomorfizmov psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 271:2 (1983), 280–282 | MR | Zbl

[5] Chern S. S., Moser J. K., “Real hvpersurfaces in complex manifolds”, Acta Math., 133:3–4 (1974), 219–274 | DOI | MR

[6] Poincarè H., “Les fonctions analytiques des deux variables et la representation conforme”, Oeuvres, v. 4, Paris, 1951–1956, 244–289

[7] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14:4 (1962), 397–429 | MR | Zbl

[8] Beloshapka V. K., “O razmernosti gruppy avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[9] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 620–645 | MR | Zbl

[10] Loboda A. V., “Linearizuemost avtomorfizmov nesfericheskikh poverkhnostei”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 864–880 | MR | Zbl

[11] Loboda A. V., Vsesoyuznaya shkola po teorii funktsii, posvyaschennaya 100-letiyu so dnya rozhdeniya N. N. Luzina, Kemerovo, 1983, 65 pp.

[12] Beloshapka V. K., Vitushkin A. G., “Otsenka radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazhenie analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl

[13] Schur I., Über Grupper periodischer linearer Substitionen, Preub. Akad. Wiss., Sitzungsberichte, 1911, 619–640