Extension of locally holomorphic mappings into a product of complex manifolds
Izvestiya. Mathematics, Tome 27 (1986) no. 1, pp. 193-199
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that locally biholomorphic mappings from the punctured ball in $\mathbf C^n$ into a product of complex manifolds of positive dimension can be extended to the whole ball. In addition, it is proved that if complex manifolds $S_1$ and $S_2$ have the property that every locally biholomorphic map of the domain $D$ over $\mathbf C^n$ into $S_j$ can be holomorphically extended to the envelope of holomorphy $\widetilde D$ of $D$, then the product $S_1\times S_2$ possesses the same property. Bibliography: 6 titles
@article{IM2_1986_27_1_a10,
author = {S. M. Ivashkovich},
title = {Extension of locally holomorphic mappings into a~product of complex manifolds},
journal = {Izvestiya. Mathematics},
pages = {193--199},
year = {1986},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a10/}
}
S. M. Ivashkovich. Extension of locally holomorphic mappings into a product of complex manifolds. Izvestiya. Mathematics, Tome 27 (1986) no. 1, pp. 193-199. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a10/