Power series and Peano curves
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 1-26
Voir la notice de l'article provenant de la source Math-Net.Ru
A series $\sum_{n=1}^\infty c_ne^{inx}$ with coefficients $\{c_n\}$ tending monotonically (decreasing) to zero is constructed whose sum $f(x)$ has the following property: for any complex number
$$
w\in G=\biggl\{z:|z|\leqslant\frac32, \biggl|z-\frac32(-1+i)\biggr|\leqslant\frac{2.3}{\sqrt2}\biggr\}
$$
the set $\{x\in(0,2\pi):f(x)=w\}$ has the cardinality of the continuum. Here the domain $G$ contains the segment $[-3/2,-1]$ on both the real and the imaginary axes. The construction is based on corresponding properties of lacunary trigonometric series, which are presented in detail.
Bibliography: 8 titles.
@article{IM2_1986_27_1_a0,
author = {A. S. Belov},
title = {Power series and {Peano} curves},
journal = {Izvestiya. Mathematics },
pages = {1--26},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/}
}
A. S. Belov. Power series and Peano curves. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/