Power series and Peano curves
Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 1-26

Voir la notice de l'article provenant de la source Math-Net.Ru

A series $\sum_{n=1}^\infty c_ne^{inx}$ with coefficients $\{c_n\}$ tending monotonically (decreasing) to zero is constructed whose sum $f(x)$ has the following property: for any complex number $$ w\in G=\biggl\{z:|z|\leqslant\frac32, \biggl|z-\frac32(-1+i)\biggr|\leqslant\frac{2.3}{\sqrt2}\biggr\} $$ the set $\{x\in(0,2\pi):f(x)=w\}$ has the cardinality of the continuum. Here the domain $G$ contains the segment $[-3/2,-1]$ on both the real and the imaginary axes. The construction is based on corresponding properties of lacunary trigonometric series, which are presented in detail. Bibliography: 8 titles.
@article{IM2_1986_27_1_a0,
     author = {A. S. Belov},
     title = {Power series and {Peano} curves},
     journal = {Izvestiya. Mathematics },
     pages = {1--26},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Power series and Peano curves
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 1
EP  - 26
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/
LA  - en
ID  - IM2_1986_27_1_a0
ER  - 
%0 Journal Article
%A A. S. Belov
%T Power series and Peano curves
%J Izvestiya. Mathematics 
%D 1986
%P 1-26
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/
%G en
%F IM2_1986_27_1_a0
A. S. Belov. Power series and Peano curves. Izvestiya. Mathematics , Tome 27 (1986) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/IM2_1986_27_1_a0/