Pseudodifference operators and their Green's functions
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 605-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies pseudodifference operators on a discrete metric space, where the matrix elements of the operators decrease faster than a system of singular functions of the distance between points determining a matrix element. Similar estimates for matrix elements are proved for the inverse of a pseudodifference operator in the case where the weight functions increase faster than any function of the volume (the number of points in the ball of radius $r$ with prescribed center) and slower than the standard exponential function. Bibliography: 12 titles.
@article{IM2_1986_26_3_a6,
     author = {M. A. Shubin},
     title = {Pseudodifference operators and their {Green's} functions},
     journal = {Izvestiya. Mathematics },
     pages = {605--622},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a6/}
}
TY  - JOUR
AU  - M. A. Shubin
TI  - Pseudodifference operators and their Green's functions
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 605
EP  - 622
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a6/
LA  - en
ID  - IM2_1986_26_3_a6
ER  - 
%0 Journal Article
%A M. A. Shubin
%T Pseudodifference operators and their Green's functions
%J Izvestiya. Mathematics 
%D 1986
%P 605-622
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a6/
%G en
%F IM2_1986_26_3_a6
M. A. Shubin. Pseudodifference operators and their Green's functions. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 605-622. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a6/

[1] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[2] Malyshev V. A., “Klasternye razlozheniya v reshetchatykh modelyakh statisticheskoi fiziki i kvantovoi teorii polya”, Uspekhi mat. nauk, 35:2 (1980), 3–53 | MR

[3] Blekher P. M., Otsenki funktsii Grina raznostnykh operatorov v proizvolnykh oblastyakh i ikh prilozheniya, preprint In. prikl. matem. im. M. V. Keldysha AN SSSR No 167 1981 g., IPM im. M. V. Keldysha AN SSSR, M., 1982 | MR

[4] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR | Zbl

[5] Dobrushin R. L., Zagradnik M., The Pirogov–Sinai Method for the continuous spin model, preprint Charles University, Praha, 1981

[6] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[7] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[8] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, Uspekhi matem. nauk, 33:2 (1978), 3–47 | MR | Zbl

[9] Feigin V. I., “Dve algebry psevdodifferentsialnykh operatorov v $\mathbf R^n$ i nekotorye prilozheniya”, Trudy Mosk. matem. ob-va, 36 (1977), 155–194 | MR

[10] Lutskii Ya. A., “Dvoinye psevdodifferentsialnye operatory v prostranstvakh eksponentsialno rastuschikh obobschennykh funktsii”, Dokl. AN SSSR, 235:3 (1977), 527–530 | MR

[11] Lutskii Ya. A., Rabinovich V. S., “Psevdodifferentsialnye operatory v prostranstvakh obobschennykh funktsii eksponentsialnogo povedeniya na beskonechnosti”, Funkts. analiz i ego pril., 12:1 (1978), 79 | MR

[12] Levendorskii S. Z., Rabinovich V. S., “Ob eksponentsialnom ubyvanii na beskonechnosti reshenii mnogomernykh uravnenii tipa svertki v konusakh”, Izv. vuzov, Matematika, 1979, no. 3, 38–44 | MR | Zbl