The nonvanishing theorem
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 591-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is a nonvanishing theorem that is a sufficient condition for nontriviality of the zeroth cohomology group of inverse sheaves. In addition, applications of this theorem to multidimensional projective geometry are indicated and problems illuminating further insight into the theory of Mori extremal rays are formulated. Bibliography: 14 titles.
@article{IM2_1986_26_3_a5,
     author = {V. V. Shokurov},
     title = {The nonvanishing theorem},
     journal = {Izvestiya. Mathematics },
     pages = {591--604},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a5/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - The nonvanishing theorem
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 591
EP  - 604
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a5/
LA  - en
ID  - IM2_1986_26_3_a5
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T The nonvanishing theorem
%J Izvestiya. Mathematics 
%D 1986
%P 591-604
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a5/
%G en
%F IM2_1986_26_3_a5
V. V. Shokurov. The nonvanishing theorem. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 591-604. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a5/

[1] Benveniste X., “Sur l'anneau canonique de certaines variétés de dimension 3”, Invent. Math., 73 (1983), 157–164 | DOI | MR | Zbl

[2] Kawamata Y., “Elementary contractions of algebraic 3-folds”, Ann. of Math., 119 (1984), 95–110 | DOI | MR | Zbl

[3] Kawamata Y., “A generalization of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl

[4] Kawamata Y., Finite generation of the pluricanonical ring for a 3-fold of general type, preprint Univ. Calif. Berkeley, 1983

[5] Kleiman S., “Towards a numerical theory of ampleness”, Ann. of Math., 84 (1966), 293–344 | DOI | MR | Zbl

[6] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl

[7] Ried M., “Canonical 3-folds”, Journées de géometrie algébraique d'Angers, ed. A. Beauville, Sijthoff and Noordhoff, Alhen, 1980, 273–310 | MR

[8] Ried M., Projective morphisms according to Kawamata, preprint Math. Inst. Univ. of Warwick, 1983

[9] Shokurov V. V., “O zamknutom konuse krivykh trekhmernykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 203–208 | MR

[10] Shokurov V. V., “Ekstremalnye styagivaniya trekhmernykh algebraicheskikh mnogoobrazii”, Biratsionalnaya geometriya algebraicheskikh mnogoobrazii, Yaroslavl, 1983, 74–90 | MR | Zbl

[11] Shokurov V. V., “Ekstremalnye morfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Tezisy XV Vsesoyuznoi algebraicheskoi konferentsii, Minsk, 1983, 224

[12] Viehweg E., “Vanishing theorems”, J. reine u. angew. Math., 335 (1982), 1–8 | MR | Zbl

[13] Kawamata Y., “The cone of curves of algebraic varieties”, Ann. of Math., 119 (1984), 603–633 | DOI | MR | Zbl

[14] Kollar J., “The cone theorem: Note to a paper by Y. Kawamata, The cone of curves of algebraic varieties”, Ann. of Math., 120 (1984), 1–5 | DOI | MR | Zbl