Simple Lie algebras satisfying the standard Lie identity of degree~5
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 553-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of simple Lie algebras over fields of characteristic different from two that satisfy the identity $$ \sum_{\sigma\in S_4}\operatorname{sgn}(\sigma)[z,x_{\sigma(1)},x_{\sigma(2)},x_{\sigma(3)},x_{\sigma(4)}]=0. $$ Bibliography: 14 titles.
@article{IM2_1986_26_3_a4,
     author = {Yu. P. Razmyslov},
     title = {Simple {Lie} algebras satisfying the standard {Lie} identity of degree~5},
     journal = {Izvestiya. Mathematics },
     pages = {553--590},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a4/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - Simple Lie algebras satisfying the standard Lie identity of degree~5
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 553
EP  - 590
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a4/
LA  - en
ID  - IM2_1986_26_3_a4
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T Simple Lie algebras satisfying the standard Lie identity of degree~5
%J Izvestiya. Mathematics 
%D 1986
%P 553-590
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a4/
%G en
%F IM2_1986_26_3_a4
Yu. P. Razmyslov. Simple Lie algebras satisfying the standard Lie identity of degree~5. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 553-590. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a4/

[1] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33:2 (1974), 251–322 | MR

[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[3] Bergman G., The Lie algebras of vector fields in $R^n$ satisfies polinomial identities, preprint, California, Berkeley, 1978, 27 pp.

[4] Sumenkov E. A., “Odin primer v teorii algebr Li”, 3-i Vsesoyuznyi simpozium po teorii kolets, algebr i modulei: Tezisy soobschenii, Tartu, 1976, 97–98

[5] Cartan E., “Les groupes de transformations continus, infinis, simples”, Ann. Sci. Ecole Norm., 26 (1909), 93–161 | MR | Zbl

[6] Jordan D. A., “Simple Lie rings of derivations of commutative rings”, J. London Math. Soc., Ser. 2, 18:13 (1978), 443–448 | DOI | MR | Zbl

[7] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[8] Razmyslov Yu. P., “O konechnoi baziruemosti tozhdestv polnoi matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113 | MR | Zbl

[9] Razmyslov Yu. P., “Tsentralnye polinomy v neprivodimykh predstavleniyakh poluprostoi algebry Li”, Matem. sb., 164:9 (1983), 97–125 | MR | Zbl

[10] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959

[11] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan”, J. Analyse Math., 15 (1965), 1–114 | DOI | MR | Zbl

[12] Veisfeiler B. Yu., “Beskonechnomernye filtrovannye algebry Li i ikh svyaz s graduirovannymi algebrami Li”, Funkts. analiz i ego pril., 2:1 (1968), 94–95 | MR | Zbl

[13] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[14] Razmyslov Yu. P., “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 723–756 | MR | Zbl