Local automorphisms and mappings of smooth strictly pseudoconvex hypersurfaces
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 531-552
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose given a smooth strictly pseudoconvex hypersurface not equivalent to the sphere, a point on the surface, and a neighborhood of the point. It is shown that all local automorphisms of the surface defined in an arbitrary neighborhood of a fixed point can be linearized by a suitable choice of local coordinates. It is also shown that given two convergent sequences of real analytic nonspherical hypersurfaces it is possible to extract a convergent subsequence from any sequence of mappings between them.
Bibliography: 20 titles.
@article{IM2_1986_26_3_a3,
author = {N. G. Kruzhilin},
title = {Local automorphisms and mappings of smooth strictly pseudoconvex hypersurfaces},
journal = {Izvestiya. Mathematics },
pages = {531--552},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a3/}
}
N. G. Kruzhilin. Local automorphisms and mappings of smooth strictly pseudoconvex hypersurfaces. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 531-552. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a3/