Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 479-496

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach is given for extracting from general formulas of finite-zone integration solutions of genus $g\geqslant2$ expressible in terms of one-dimensional theta functions. As an application general formulas fo the type of the Lamb Ansatz for genus $g=3$ are found for the sine-Gordon, nonlinear Schrödinger and Koretweg–de Vries equations, and the period matrices of some hyperelliptic curves are computed explicitly. Bibliography: 35 titles.
@article{IM2_1986_26_3_a1,
     author = {M. V. Babich and A. I. Bobenko and V. B. Matveev},
     title = {Solutions of nonlinear equations integrable in {Jacobi} theta functions by the method of the inverse problem, and symmetries of algebraic curves},
     journal = {Izvestiya. Mathematics },
     pages = {479--496},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/}
}
TY  - JOUR
AU  - M. V. Babich
AU  - A. I. Bobenko
AU  - V. B. Matveev
TI  - Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 479
EP  - 496
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/
LA  - en
ID  - IM2_1986_26_3_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%A A. I. Bobenko
%A V. B. Matveev
%T Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
%J Izvestiya. Mathematics 
%D 1986
%P 479-496
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/
%G en
%F IM2_1986_26_3_a1
M. V. Babich; A. I. Bobenko; V. B. Matveev. Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/