Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 479-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach is given for extracting from general formulas of finite-zone integration solutions of genus $g\geqslant2$ expressible in terms of one-dimensional theta functions. As an application general formulas fo the type of the Lamb Ansatz for genus $g=3$ are found for the sine-Gordon, nonlinear Schrödinger and Koretweg–de Vries equations, and the period matrices of some hyperelliptic curves are computed explicitly. Bibliography: 35 titles.
@article{IM2_1986_26_3_a1,
     author = {M. V. Babich and A. I. Bobenko and V. B. Matveev},
     title = {Solutions of nonlinear equations integrable in {Jacobi} theta functions by the method of the inverse problem, and symmetries of algebraic curves},
     journal = {Izvestiya. Mathematics },
     pages = {479--496},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/}
}
TY  - JOUR
AU  - M. V. Babich
AU  - A. I. Bobenko
AU  - V. B. Matveev
TI  - Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 479
EP  - 496
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/
LA  - en
ID  - IM2_1986_26_3_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%A A. I. Bobenko
%A V. B. Matveev
%T Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
%J Izvestiya. Mathematics 
%D 1986
%P 479-496
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/
%G en
%F IM2_1986_26_3_a1
M. V. Babich; A. I. Bobenko; V. B. Matveev. Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a1/

[1] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de-Friza. I”, Funkts. analiz i ego prilozheniya, 8:3 (1974), 54–66 | MR

[2] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de-Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matem. nauk, 31:1 (1976), 55–136 | MR | Zbl

[3] Matveev V. B., Abelian functions and solutions, preprint No 373, University of Wroclaw, 1976, 98 pp.

[4] Its A. R., Matveev V. B., “Ob odnom klasse reshenii uravneniya Kortevega–de-Friza”, Problemy matematicheskoi fiziki, vyp. 8, LGU, L., 1976, 70–92 | MR

[5] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, Uspekhi matem. nauk, 32:6 (1977), 183–208 | MR | Zbl

[6] Kozel V. A., Kotlyarov V. P., “Pochti-periodicheskie resheniya uravneniya $u_{tt}-u_{xx}=\sin u$”, Dokl. AN USSR, ser. A, 1976, no. 10, 878–881 | MR | Zbl

[7] Mc Kean H. P., Moser J., Airault H., “Rational and elliptic solutions of the $\operatorname{KdV}$ equation”, Comm. Pure and Appl. Math., 30 (1977), 95–148 | DOI | MR

[8] Enol'skii V. Z., On the solutions in elliptic functions of the integrable nonlinear equations, preprint ITP–83–36E, 1983, 12 pp. | MR

[9] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi matem. nauk, 36:2 (1982), 11–80 | MR

[10] Belokolos E. D., Enolskii V. Z., “Obobschennyi anzatts Lemba”, TMF, 53:2 (1982), 271–282 | MR | Zbl

[11] Belokolos E. D., Enol'skii V. Z., Classification of nonlinear waves in the Josephson Junction, preprint ITP–81–121E, 1981, 58 pp. | Zbl

[12] Belokolos E. D., Enol'skii V. Z., On the solutions expressed in terms of elliptic functions of the nonlinear equations integrable within the IS method and the reduction problem of hyperelliptic integrals, preprint ITP–82–36E, 1982, 13 pp. | MR | Zbl

[13] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de-Friza”, ZhETF, 67:12 (1974), 2131–2143 | MR

[14] Appel P., “Sur des cas de réduction de fonction $\theta$ de plusieurs variables à de fonctions $\theta$ d'un moindre nombre de variables”, Bull, de la Societe Mathematique de France, X (1882), 59–67 | Zbl

[15] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego prilozheniya, 16:1 (1982), 27–43 | MR | Zbl

[16] Krichever I. M., “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz, 14:4 (1980), 45–54 | MR | Zbl

[17] Krazer A., Lehrbuch der Theta-functionen, Teubner, Leipzig, 1903, 509 s | Zbl

[18] Mogos I. M., Brindley J., “Evolution of barocline wave packets in a flow with continuous shear and stratification”, Proc. R. Soc. Lond. (A), 373 (1981), 379–404 | MR

[19] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[20] Horiuchi R., “Normal coverings of hyperelliptic Riemann surfaces”, Journal of Math. of Kyoto University, 19:3 (1979), 497–524 | MR

[21] Bobenko A. I., “Konechnozonnye resheniya v terminakh avtomorfnykh funktsii. Uravnenie Kadomtseva–Petviashvili”, Zapiski nauchn. seminarov LOMI, 129, 1983, 5–16 | MR | Zbl

[22] Poincaré H., “Sur I'integration algebrique des equations linéaires et les periodes des integrales abeliennes”, Journal de Math., 5 ser., 9 (1903,), 139–219

[23] Bikbaev R. F., Bobenko A. I., On the finite gap integration of the Landau–Lifshitz equation. XYZ case, preprint LOMI E–8–83, 1983, 27 pp. | Zbl

[24] Bikbaev R. F., Bobenko A. I., Its A. R., “O konechnozonnom integrirovanii uravneniya Landau–Lifshitsa”, Dokl. AN SSSR, 272:6 (1983), 1293–1298 | MR | Zbl

[25] Babich M. V., Bobenko A. I., Matveev V. B., “Reduktsii mnogomernykh teta-funktsii i simmetrii algebraicheskikh krivykh”, Dokl. AN SSSR, 274:2 (1983), 13–17 | MR

[26] Its A. R., “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestnik LGU, 7:2 (1976), 39–46 | MR | Zbl

[27] Kuribayashi A., Kuribayashi I., “On a canonical form of a non-hyperelliptic curve of genus 3 with nontrivial automorphism”, Bull. Fac. Sci. and Eng. Chuo University, 24, 1981, 39–59 | MR | Zbl

[28] Kuribayashi A., “On analytic families of compact Riemann surfaces with non-trivial automorphisms”, Nagoya Math. Journal, 28:10 (1966), 119–165 | MR | Zbl

[29] Kato T., “On Riemann surfaces of genus 4 with nontrivial automorphisms”, Kodai Math. J., 4:3 (1981), 443–456 | DOI | MR | Zbl

[30] Kuribayashi A., Komiya K., “On Weierstrass points and automorphisms of curves of genus$$three”, Lecture Notes in Math., 732 (1979), 252–299 | MR

[31] Nakamura A., Matsuno M., “On the direct approach to the construction of the periodic solutions of the linear equations”, J. of Phys. Soc. of Japan, 47 (1979), 1701 pp. ; 48 (1980), 1365 ; 50 (1981), 338 | MR | Zbl | DOI | DOI

[32] Its A. R., Matveev V. B., “Operatory Khilla s konechnym chislom lakun i mnogosolitonnye resheniya uravneniya Kortevega–de-Friza”, TMF, 23:1 (1975), 51–67 | MR

[33] Bobenko A. I., “O periodicheskikh konechnozonnykh resheniyakh uravneniya sine-Gordon”, Funkts. analiz i ego pril., 18:3 (1984), 73–74 | MR | Zbl

[34] Belokolos E. D., Bobenko A. I., Enol'skii V. Z. Matveev V. B., Algebraic-geometric principles of superposition of finitely-gap solutions of integrable nonlinear equations: reduction of abelian integrals and Riemann Theta-functions, preprint LTP–84–149E, Kiev, 1984, 63 pp.

[35] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Matveev V. B., Algebraic-geometric principles of superposition of finitely-gap solutions of integrable nonlinear equations: finitely-gap solutions of the KdV tipe nonlinear equations, which are expressible in terms of Jacobi theta-functions, preprint ITP–84–154E, Kiev, 1984, 60 pp.