Cohomology of a~quasihomogeneous complete intersection
Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 437-477
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper are computed the Poincaré series of the highest local cohomology of the modules of regular forms on a nondegenerate quasihomogeneous singularity and the dimensions of the cohomology spaces of the bidual sheaves of holomorphic forms on a quasismooth complete intersection. Theorems are proved about the structure of the module of vector fields on a nondegenerate quasihomogeneous singularity and about whether the maximal modular stratum of a versal deformation of such a singularity is reduced.
Bibliography: 47 titles.
@article{IM2_1986_26_3_a0,
author = {A. G. Aleksandrov},
title = {Cohomology of a~quasihomogeneous complete intersection},
journal = {Izvestiya. Mathematics },
pages = {437--477},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a0/}
}
A. G. Aleksandrov. Cohomology of a~quasihomogeneous complete intersection. Izvestiya. Mathematics , Tome 26 (1986) no. 3, pp. 437-477. http://geodesic.mathdoc.fr/item/IM2_1986_26_3_a0/