On~some numerical characteristics of multidimensional Fano varieties
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 423-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of homological properties of the homogeneous coordinate ring $R(V)$ of an $n$-dimensional projective Fano variety $V$ over the field $\mathbf C$ estimates are obtained for the degrees of generators of the algebra $R(V)$ and the ideal $I(V)$. All possible values are found for the dimension and the degree of a variety $V$ of codimension 3 in $\mathbf P^N$ which is not a complete intersection. We give a description of multidimensional Fano varieties of codimension 4 in $\mathbf P^N$ whose linear sections are canonical curves of genus 6. Bibliography: 12 titles.
@article{IM2_1986_26_2_a8,
     author = {V. V. Batyrev},
     title = {On~some numerical characteristics of multidimensional {Fano} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {423--435},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/}
}
TY  - JOUR
AU  - V. V. Batyrev
TI  - On~some numerical characteristics of multidimensional Fano varieties
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 423
EP  - 435
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/
LA  - en
ID  - IM2_1986_26_2_a8
ER  - 
%0 Journal Article
%A V. V. Batyrev
%T On~some numerical characteristics of multidimensional Fano varieties
%J Izvestiya. Mathematics 
%D 1986
%P 423-435
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/
%G en
%F IM2_1986_26_2_a8
V. V. Batyrev. On~some numerical characteristics of multidimensional Fano varieties. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 423-435. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Gushel N. P., “O mnogoobraziyakh Fano roda 6”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1159–1174 | MR

[3] Serr Zh-P., “Kogerentnye algebraicheskie puchki”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 372–458

[4] Arbarello E., Sernesi E., “Petri's approach to the study of the ideal associated to a special divisor”, Invent. Math., 42 (1978), 99–119 | DOI | MR

[5] Bass H., “On the ubiquity of Gorenstein rings”, Math. Zeit., 82 (1963), 8–28 | DOI | MR | Zbl

[6] Buchsbaum D., Eisenbud D., “Algebra structures for finite free resolutions and some structure theorems lor ideals of codimension 3”, Amer. J. Math., 99:3 (1977), 447–485 | DOI | MR | Zbl

[7] Fossum R., Foxby H.-B., “The category of graded modules”, Math. Scand., 35:2 (1974), 288–300 | MR

[8] Fujita T., “On the structure of polarized manifolds with total deficiency one II”, Math. Soc. Jap., 33:3 (1981), 415–434 | DOI | MR | Zbl

[9] Grothendieck A., Local Cohomology, Lecture Notes in Math., No 41, Springer-Verlag, Heidelberg, 1967 | MR | Zbl

[10] Kustin A., Miller M., “Algebra structures on minimal resolutions of Gorenstein rings”, Commutative algebra, Lecture Notes in Pure and Appl. Math., 68, Dekker, New York, 1982, 45–65 | MR

[11] Kustin A., Miller M., “A general resolution for grade four Gorenstein ideals”, Manuscripta Math., 35:1–2 (1981), 221–269 | DOI | MR | Zbl

[12] Serre J.-P., “Sur les modules projectifs”, Seminair Dubreil, 1960