On~some numerical characteristics of multidimensional Fano varieties
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 423-435
Voir la notice de l'article provenant de la source Math-Net.Ru
On the basis of homological properties of the homogeneous coordinate ring $R(V)$ of an $n$-dimensional projective Fano variety $V$ over the field $\mathbf C$ estimates are obtained for the degrees of generators of the algebra $R(V)$ and the ideal $I(V)$. All possible values are found for the dimension and the degree of a variety $V$ of codimension 3 in $\mathbf P^N$ which is not a complete intersection. We give a description of multidimensional Fano varieties of codimension 4 in $\mathbf P^N$ whose linear sections are canonical curves of genus 6.
Bibliography: 12 titles.
@article{IM2_1986_26_2_a8,
author = {V. V. Batyrev},
title = {On~some numerical characteristics of multidimensional {Fano} varieties},
journal = {Izvestiya. Mathematics },
pages = {423--435},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/}
}
V. V. Batyrev. On~some numerical characteristics of multidimensional Fano varieties. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 423-435. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a8/