Green functions and cohomology
Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 405-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complex Green functions for the Laplace operator on the background of general Yang–Mills fields are interpreted in terms of cohomology in the space of complex light lines by means of the Penrose–Ward transformation. Bibliography: 15 titles.
@article{IM2_1986_26_2_a7,
     author = {Ho\`ang L\^e Minh},
     title = {Green functions and cohomology},
     journal = {Izvestiya. Mathematics },
     pages = {405--421},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a7/}
}
TY  - JOUR
AU  - Hoàng Lê Minh
TI  - Green functions and cohomology
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 405
EP  - 421
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a7/
LA  - en
ID  - IM2_1986_26_2_a7
ER  - 
%0 Journal Article
%A Hoàng Lê Minh
%T Green functions and cohomology
%J Izvestiya. Mathematics 
%D 1986
%P 405-421
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a7/
%G en
%F IM2_1986_26_2_a7
Hoàng Lê Minh. Green functions and cohomology. Izvestiya. Mathematics , Tome 26 (1986) no. 2, pp. 405-421. http://geodesic.mathdoc.fr/item/IM2_1986_26_2_a7/

[1] Tvistory i kalibrovochnye polya, Sb. statei. Per. s angl., Mir, M., 1983 | MR

[2] Hitchin N. J., “Linear field equations self-dual spaces”, Proc. R. Soc. Lond., ser. A, 370 (1980), 173–191 | DOI | MR | Zbl

[3] Atiayh M. F., Hitchin N. J., Drinfeld V. G., Manin Yu. I., “Construction of instantons”, Phys. Lett., ser. A, 65 (1978), 185–187 | DOI | MR

[4] Henkin G. M., Manin Yu. I., “Twistor description of classical Yang–Mills–Dirac fields”, Phys. Lett., ser. B, 95 (1980), 405–408 | DOI | MR

[5] Manin Yu. I., “Kalibrovochnye polya i golomorfnaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 17, VINITI, M., 1981, 3–55 | MR

[6] Atiyah M. F., “Green's functions for self-dual four-manifolds”, Adv. Math. Suppl. Stud., 7A (1981), 129–158 | MR | Zbl

[7] Manin Yu. I., “Novye tochnye resheniya i kogomologicheskii analiz obychnykh i supersimmetrichnykh uravnenii Yanga–Millsa”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 98–114 | MR | Zbl

[8] Khoang Le Min, “O tvistornoi interpretatsii funktsii Grina dlya neavtodualnogo polya Yanga–Millsa”, Uspekhi matem. nauk, 38:5 (1983), 211–212 | MR | Zbl

[9] Christ N. J., Weinberg E. J., Stanton N. K., “General self-dual Yang–Mills solutions”, Phys. Rev., ser. D, 18 (1978), 2013–2025 | DOI | MR

[10] Corrigan E. F., Fairlie D. B., Templeton S., Goddard P., “A Green function for the general self-dual gauge field”, Nucl. Phys., ser. B, 140 (1978), 31–44 | DOI

[11] Douady A., Verdier J. L.(eds.), Les equations de Yang–Mills (Séminaire E. N. S., 1977–1978), Astérisque, 71, Société Mathématique de France, Paris, 1980 | MR

[12] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[13] Henkin G. M., Manin Yu. I., “On the chomology of twistor flag spaces”, Compositio Math., 44 (1981), 103–111 | MR | Zbl

[14] Adamar Zh., Zadacha Koshi dlya uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[15] Dourcourt G., “Characteristic hypersurfaces in general relativity”, Math. Phys., 8 (1967), 1492–1501 | DOI