$JW$-factors and antiautomorphisms of von~Neumann algebras
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 201-209
Voir la notice de l'article provenant de la source Math-Net.Ru
The connection between $JW$-factors and their enveloping von Neumann algebras is studied for $JW$-factors not isomorphic to the Hermitian part of any von Neumann algebra. It is proved that these $JW$-factors are determined by an involutive $^*$-antiautomorphism of the enveloping von Neumann algebra. A classification of $JW$-factors of type III according to types III$_\lambda$, $0\leqslant\lambda\leqslant1$, is given, and the existence of each type is proved. It is shown that there are only two nonisomorphic $JW$-factors of type II$_1$ for which the enveloping von Neumann algebras are hyperfinite.
Bibliography: 18 titles.
@article{IM2_1986_26_1_a7,
author = {Sh. A. Ayupov},
title = {$JW$-factors and antiautomorphisms of {von~Neumann} algebras},
journal = {Izvestiya. Mathematics },
pages = {201--209},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a7/}
}
Sh. A. Ayupov. $JW$-factors and antiautomorphisms of von~Neumann algebras. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 201-209. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a7/