On~the algebraic irreducibility of the set of linear differential equations
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 185-200

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of linear differential equations of prime order with coefficients in $\mathbf C(z)$ is shown to be algebraically irreducible. This result is used to prove that the values of hypergeometric $E$-functions at the set of algebraic points are algebraically independent. Bibliography: 15 titles.
@article{IM2_1986_26_1_a6,
     author = {V. Kh. Salikhov},
     title = {On~the algebraic irreducibility of the set of linear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {185--200},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - On~the algebraic irreducibility of the set of linear differential equations
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 185
EP  - 200
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/
LA  - en
ID  - IM2_1986_26_1_a6
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T On~the algebraic irreducibility of the set of linear differential equations
%J Izvestiya. Mathematics 
%D 1986
%P 185-200
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/
%G en
%F IM2_1986_26_1_a6
V. Kh. Salikhov. On~the algebraic irreducibility of the set of linear differential equations. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/