On~the algebraic irreducibility of the set of linear differential equations
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 185-200
Voir la notice de l'article provenant de la source Math-Net.Ru
The set of linear differential equations of prime order with coefficients in $\mathbf C(z)$ is shown to be algebraically irreducible. This result is used to prove that the values of hypergeometric $E$-functions at the set of algebraic points are algebraically independent.
Bibliography: 15 titles.
@article{IM2_1986_26_1_a6,
author = {V. Kh. Salikhov},
title = {On~the algebraic irreducibility of the set of linear differential equations},
journal = {Izvestiya. Mathematics },
pages = {185--200},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/}
}
V. Kh. Salikhov. On~the algebraic irreducibility of the set of linear differential equations. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a6/