Scattering of a~plane wave by a~cylindrical surface with a~long perturbation
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 153-184
Voir la notice de l'article provenant de la source Math-Net.Ru
The Helmholtz equation in the exterior of a surface $S$: $r=dF(z/l)$ in $\mathbf R^3$, where $F(z)\equiv1$ for $|z|\geqslant1/2$, and the problem of the scattering of a plane wave for Dirichlet, Neumann and impedance boundary conditions on $S$ are considered. The asymptotics of the scattered field and the scattering amplitudes are found under the conditions $kl\to\infty$, $kd\thicksim1$, $\cos{\theta_0}\leqslant c1$, where $k$, $\theta_0$, $\varphi_0$ are the spherical coordinates of the wave vector of the plane wave.
Bibliography: 21 titles.
@article{IM2_1986_26_1_a5,
author = {M. V. Fedoryuk},
title = {Scattering of a~plane wave by a~cylindrical surface with a~long perturbation},
journal = {Izvestiya. Mathematics },
pages = {153--184},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/}
}
M. V. Fedoryuk. Scattering of a~plane wave by a~cylindrical surface with a~long perturbation. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 153-184. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/