Scattering of a~plane wave by a~cylindrical surface with a~long perturbation
Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 153-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Helmholtz equation in the exterior of a surface $S$: $r=dF(z/l)$ in $\mathbf R^3$, where $F(z)\equiv1$ for $|z|\geqslant1/2$, and the problem of the scattering of a plane wave for Dirichlet, Neumann and impedance boundary conditions on $S$ are considered. The asymptotics of the scattered field and the scattering amplitudes are found under the conditions $kl\to\infty$, $kd\thicksim1$, $\cos{\theta_0}\leqslant c1$, where $k$, $\theta_0$, $\varphi_0$ are the spherical coordinates of the wave vector of the plane wave. Bibliography: 21 titles.
@article{IM2_1986_26_1_a5,
     author = {M. V. Fedoryuk},
     title = {Scattering of a~plane wave by a~cylindrical surface with a~long perturbation},
     journal = {Izvestiya. Mathematics },
     pages = {153--184},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/}
}
TY  - JOUR
AU  - M. V. Fedoryuk
TI  - Scattering of a~plane wave by a~cylindrical surface with a~long perturbation
JO  - Izvestiya. Mathematics 
PY  - 1986
SP  - 153
EP  - 184
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/
LA  - en
ID  - IM2_1986_26_1_a5
ER  - 
%0 Journal Article
%A M. V. Fedoryuk
%T Scattering of a~plane wave by a~cylindrical surface with a~long perturbation
%J Izvestiya. Mathematics 
%D 1986
%P 153-184
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/
%G en
%F IM2_1986_26_1_a5
M. V. Fedoryuk. Scattering of a~plane wave by a~cylindrical surface with a~long perturbation. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 153-184. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/

[1] Relei, Teoriya zvuka, t. 2, Gostekhteorizdat, M., 1955

[2] Khenl X., Maue A., Vestfall K., Teoriya difraktsii, Mir, M., 1964

[3] Ilin A. M., “Kraevye zadachi dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. I. Dvumernyi sluchai”, Matem. sb., 99(141) (1976), 514–537

[4] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, TGU, Tbilisi, 1981 | MR

[5] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116(158) (1981), 187–217 | MR

[6] Ilin A. M., “Kraevye zadachi dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. II. Oblast s malym otverstiem”, Matem. sb., 103(147) (1977), 265–284

[7] Fedoryuk M. V., “Primenenie metoda sraschivaniya asimptoticheskikh razlozhenii k releevskomu priblizheniyu v skalyarnoi teorii difraktsii”, Akusticheskii zh., 27:3 (1981), 441–448 | MR

[8] Van Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967 | Zbl

[9] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, Mir, M., 1972 | MR

[10] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[11] Geer J., “The scattering of a scalar wave by a slender body of revolution”, SIAM J. Appl. Math., 34:2 (1978), 348–370 | DOI | MR | Zbl

[12] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravnenii Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl

[13] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Trudy seminara S. L. Soboleva, no. 1, Novosibirsk, 1980, 113–131 | MR | Zbl

[14] Myasnikov V. P., Fedoryuk M. V., “Izluchenie i rasseyanie uprugikh voln tonkoi osesimmetrichnoi polostyu”, Issledovanie Zemli novymi geofizicheskimi metodami, VTs SO AN SSSR, Novosibirsk, 1980, 5–28

[15] Myasnikov V. P., Fedoryuk M. V., “Releevskoe priblizhenie v teorii uprugosti”, Dokl. AN SSSR, 254:3 (1982), 589–592 | MR

[16] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[17] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 149–235 | MR | Zbl

[18] Fedoryuk M. V., “Asimptotika resheniya kraevoi zadachi so skolzyaschimi luchami dlya differentsialnykh uravnenii vtorogo poryadka”, Trudy Mosk. matem. obschestva, 42 (1981), 64–104 | MR

[19] Fedoryuk M. V., “Asimptotika volnovogo potentsiala, sosredotochennogo na pryamoi”, Matem. zametki, 36:5 (1984), 673–679 | MR | Zbl

[20] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov, summ i proizvedenii, Fizmatgiz, M., 1962

[21] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR