Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1986_26_1_a5, author = {M. V. Fedoryuk}, title = {Scattering of a~plane wave by a~cylindrical surface with a~long perturbation}, journal = {Izvestiya. Mathematics }, pages = {153--184}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {1986}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/} }
M. V. Fedoryuk. Scattering of a~plane wave by a~cylindrical surface with a~long perturbation. Izvestiya. Mathematics , Tome 26 (1986) no. 1, pp. 153-184. http://geodesic.mathdoc.fr/item/IM2_1986_26_1_a5/
[1] Relei, Teoriya zvuka, t. 2, Gostekhteorizdat, M., 1955
[2] Khenl X., Maue A., Vestfall K., Teoriya difraktsii, Mir, M., 1964
[3] Ilin A. M., “Kraevye zadachi dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. I. Dvumernyi sluchai”, Matem. sb., 99(141) (1976), 514–537
[4] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, TGU, Tbilisi, 1981 | MR
[5] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116(158) (1981), 187–217 | MR
[6] Ilin A. M., “Kraevye zadachi dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. II. Oblast s malym otverstiem”, Matem. sb., 103(147) (1977), 265–284
[7] Fedoryuk M. V., “Primenenie metoda sraschivaniya asimptoticheskikh razlozhenii k releevskomu priblizheniyu v skalyarnoi teorii difraktsii”, Akusticheskii zh., 27:3 (1981), 441–448 | MR
[8] Van Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967 | Zbl
[9] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, Mir, M., 1972 | MR
[10] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR
[11] Geer J., “The scattering of a scalar wave by a slender body of revolution”, SIAM J. Appl. Math., 34:2 (1978), 348–370 | DOI | MR | Zbl
[12] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravnenii Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl
[13] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Trudy seminara S. L. Soboleva, no. 1, Novosibirsk, 1980, 113–131 | MR | Zbl
[14] Myasnikov V. P., Fedoryuk M. V., “Izluchenie i rasseyanie uprugikh voln tonkoi osesimmetrichnoi polostyu”, Issledovanie Zemli novymi geofizicheskimi metodami, VTs SO AN SSSR, Novosibirsk, 1980, 5–28
[15] Myasnikov V. P., Fedoryuk M. V., “Releevskoe priblizhenie v teorii uprugosti”, Dokl. AN SSSR, 254:3 (1982), 589–592 | MR
[16] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[17] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 149–235 | MR | Zbl
[18] Fedoryuk M. V., “Asimptotika resheniya kraevoi zadachi so skolzyaschimi luchami dlya differentsialnykh uravnenii vtorogo poryadka”, Trudy Mosk. matem. obschestva, 42 (1981), 64–104 | MR
[19] Fedoryuk M. V., “Asimptotika volnovogo potentsiala, sosredotochennogo na pryamoi”, Matem. zametki, 36:5 (1984), 673–679 | MR | Zbl
[20] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov, summ i proizvedenii, Fizmatgiz, M., 1962
[21] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR