Asymptotics of the solution of the nonlinear Dirichlet problem having a~strong singularity near a~corner point
Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 531-550

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the solutions of the Dirichlet problem for the equation $$ -\Delta u(x)+u(x)^{2k+1}=f(x),\qquad x\in\Omega, $$ is studied in a plane domain $\Omega$ with a corner point of angle $\alpha$. The asymptotics of a solution of this problem is constructed in the case where the right side $f$ has a strong singularity near the corner point. Bibliography: 12 titles.
@article{IM2_1985_25_3_a6,
     author = {S. A. Nazarov and K. I. Pileckas},
     title = {Asymptotics of the solution of the nonlinear {Dirichlet} problem having a~strong singularity near a~corner point},
     journal = {Izvestiya. Mathematics },
     pages = {531--550},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - K. I. Pileckas
TI  - Asymptotics of the solution of the nonlinear Dirichlet problem having a~strong singularity near a~corner point
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 531
EP  - 550
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a6/
LA  - en
ID  - IM2_1985_25_3_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A K. I. Pileckas
%T Asymptotics of the solution of the nonlinear Dirichlet problem having a~strong singularity near a~corner point
%J Izvestiya. Mathematics 
%D 1985
%P 531-550
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a6/
%G en
%F IM2_1985_25_3_a6
S. A. Nazarov; K. I. Pileckas. Asymptotics of the solution of the nonlinear Dirichlet problem having a~strong singularity near a~corner point. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 531-550. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a6/