Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III
Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 475-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the third part of work dealing with the construction of a regularized asymptotic expression for the solution of a nonhomogeneous Cauchy problem in a finite-dimensional space $E$. The limit operator has a Jordan structure. On the lines of the theory of branching a method is given for describing all possible singularities of the problem in the case when the structure matrix has degeneracies. As an example, a complete analysis of a Cauchy problem is given in three-dimensional space, along with a certain case in four-dimensional space. Bibliography: 4 titles.
@article{IM2_1985_25_3_a3,
     author = {A. G. Eliseev},
     title = {Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit {operator.~III}},
     journal = {Izvestiya. Mathematics },
     pages = {475--500},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/}
}
TY  - JOUR
AU  - A. G. Eliseev
TI  - Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 475
EP  - 500
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/
LA  - en
ID  - IM2_1985_25_3_a3
ER  - 
%0 Journal Article
%A A. G. Eliseev
%T Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III
%J Izvestiya. Mathematics 
%D 1985
%P 475-500
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/
%G en
%F IM2_1985_25_3_a3
A. G. Eliseev. Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~III. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 475-500. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/

[1] Eliseev A. G., “Teoriya singulyarnykh vozmuschenii dlya sistem differentsialnykh uravnenii v sluchae kratnogo spektra predelnogo operatora, I, II”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 999–1041 | MR

[2] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR | Zbl

[3] Shkil N. I., Asimptotichni metodi v differentsialnykh rivnyannyakh, Vischa shkola, Kiiv, 1971

[4] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR