Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III
Izvestiya. Mathematics, Tome 25 (1985) no. 3, pp. 475-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is the third part of work dealing with the construction of a regularized asymptotic expression for the solution of a nonhomogeneous Cauchy problem in a finite-dimensional space $E$. The limit operator has a Jordan structure. On the lines of the theory of branching a method is given for describing all possible singularities of the problem in the case when the structure matrix has degeneracies. As an example, a complete analysis of a Cauchy problem is given in three-dimensional space, along with a certain case in four-dimensional space. Bibliography: 4 titles.
@article{IM2_1985_25_3_a3,
     author = {A. G. Eliseev},
     title = {Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit {operator.~III}},
     journal = {Izvestiya. Mathematics},
     pages = {475--500},
     year = {1985},
     volume = {25},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/}
}
TY  - JOUR
AU  - A. G. Eliseev
TI  - Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III
JO  - Izvestiya. Mathematics
PY  - 1985
SP  - 475
EP  - 500
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/
LA  - en
ID  - IM2_1985_25_3_a3
ER  - 
%0 Journal Article
%A A. G. Eliseev
%T Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III
%J Izvestiya. Mathematics
%D 1985
%P 475-500
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/
%G en
%F IM2_1985_25_3_a3
A. G. Eliseev. Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III. Izvestiya. Mathematics, Tome 25 (1985) no. 3, pp. 475-500. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a3/

[1] Eliseev A. G., “Teoriya singulyarnykh vozmuschenii dlya sistem differentsialnykh uravnenii v sluchae kratnogo spektra predelnogo operatora, I, II”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 999–1041 | MR

[2] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR | Zbl

[3] Shkil N. I., Asimptotichni metodi v differentsialnykh rivnyannyakh, Vischa shkola, Kiiv, 1971

[4] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR