Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1985_25_3_a2, author = {A. Yu. Veretennikov}, title = {Probabilistic problems in the theory of hypoellipticity}, journal = {Izvestiya. Mathematics }, pages = {455--473}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {1985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a2/} }
A. Yu. Veretennikov. Probabilistic problems in the theory of hypoellipticity. Izvestiya. Mathematics , Tome 25 (1985) no. 3, pp. 455-473. http://geodesic.mathdoc.fr/item/IM2_1985_25_3_a2/
[1] Hörmander L., “Hypoelliptic second order differential equations”, Acta Mathematica, 119 (1967), 147–171 | DOI | MR | Zbl
[2] Oleinik O. A., Radkevich E. V., “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki, seriya matem., 22, VINITI, M., 1971, 252 | MR
[3] Malliavin P., “Stochastic calculus of variations and hypoelliptic operators”, Proc. Internat. Conf. on Stochastic differential equations (Kyoto, 1976), Tokyo, Kinokumiya, New York, Wiley, 1978, 195–263 | MR | Zbl
[4] Malliavin P., “$C^k$-hypoellipticity with degeneracy”, Stochastic Analysis, eds. A. Friedman, M. Pinsky, Acad. Press, New York, London, 1978, 199–214 | MR
[5] Strook D. W., “The Malliavin calculus and its applications”, Lecture Notes in Math., 851, 1981, 394–432 | MR
[6] Strook D. W., “The Malliavin calculus and its application to second order parabolic differential equations, I, II”, Math. System Theory, 14 (1981), 25–65 ; 2, 141–171 | DOI | MR
[7] Strook D. W., “The Malliavin calculus, a functional analytic approach”, J. Functional Anal., 44 (1981), 212–257 | DOI | MR
[8] Bismut J. M., “Martingales, the Malliavin calculus and Hörmander's theorem”, Lecture Notes in Math., 851, 1981, 85–109 | MR | Zbl
[9] Bismut J. M., “Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions”, Z. Wahrsch., 56 (1981), 469–505 | DOI | MR | Zbl
[10] Bismut J. M., Michel D., “Diffusions conditionnelles. I: Hypoellipticité partielle”, J. Functional Anal., 44 (1981), 174–211 ; “II: Generateur Conditionnell. Application an filtrage”, J. Functional Anal., 45 (1982), 274–292 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland Publ. Co., Tokyo, Kodansha, New York, Oxford, Amsterdam, 1981, 464 | MR | Zbl
[12] Ichihara K., Kunita H., “A classification of second order degenerate elliptie operators and its probabilistic characterization”, Z. Wahrsch., 30 (1974), 235–254 | DOI | MR | Zbl
[13] Krylov N. V., Rozovskii B. L., “Stokhasticheskie uravneniya v chastnykh proizvodnykh i diffuzionnye protsessy”, Uspekhi matem. nauk, 37:6 (1982), 75–95 | MR | Zbl
[14] Blagoveschenskii Yu. N., Freidlin M. I., “Nekotorye svoistva diffuzionnykh protsessov, zavisyaschikh ot parametra”, Dokl. AN SSSR, 138:3 (1961), 508–511 | MR | Zbl
[15] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev., 1968 | Zbl
[16] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956, 606
[17] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 | MR | Zbl
[18] Danford H., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896
[19] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975, 320 | MR
[20] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971, 288 | MR