Linear differential operators with real spectrum, and optimal quadrature formulas
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 391-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with an investigation of optimal quadrature formulas on periodic function classes defined by a restriction imposed on the action of a linear differential operator with constant coefficients and real spectrum in the metric of the space $L^p$, $1\leqslant p\leqslant\infty$. It is proved that on each class of this form there is for any $n$ an optimal quadrature formula with $n$ nodes, and the nodes are equally spaced on a period. The uniqueness of an optimal quadrature formula is investigated. Our results, on the one hand, give a direct generalization of previous results obtained by Nikol'skii, Motornyi, Zhensykbaev, Ligun, and Boyanov, and, on the other hand, make it possible to investigate the problem of optimal quadrature formulas and to obtain a result on optimality of equally spaced nodes on certain classes of infinitely differentiable functions that are limits of the aforementioned classes in a definite sense. Bibliography: 22 titles.
@article{IM2_1985_25_2_a6,
     author = {M. A. Chahkiev},
     title = {Linear differential operators with real spectrum, and optimal quadrature formulas},
     journal = {Izvestiya. Mathematics },
     pages = {391--417},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a6/}
}
TY  - JOUR
AU  - M. A. Chahkiev
TI  - Linear differential operators with real spectrum, and optimal quadrature formulas
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 391
EP  - 417
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a6/
LA  - en
ID  - IM2_1985_25_2_a6
ER  - 
%0 Journal Article
%A M. A. Chahkiev
%T Linear differential operators with real spectrum, and optimal quadrature formulas
%J Izvestiya. Mathematics 
%D 1985
%P 391-417
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a6/
%G en
%F IM2_1985_25_2_a6
M. A. Chahkiev. Linear differential operators with real spectrum, and optimal quadrature formulas. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 391-417. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a6/

[1] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[2] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[3] Akhiezer N. I., “O nailuchshikh priblizheniyakh analiticheskikh funktsii”, Dokl. AN SSSR, 18:2 (1938), 241–244 | Zbl

[4] Babenko V. F., Grankina T. A., Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, DGU, Dnepropetrovsk, 1982

[5] Zhensykbaev A. A., “Nailuchshaya kvadraturnaya formula dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1110–1124 | MR | Zbl

[6] Zhensykbaev A. A., “Monosplainy minimalnoi normy i nailuchshie kvadraturnye formuly”, Uspekhi matem. nauk, 36:4 (1981), 107–159 | MR | Zbl

[7] Zhensykbaev A. A., “Monosplainy, naimenee uklonyayuschiesya ot nulya, i nailuchshie kvadraturnye formuly”, Dokl. AN SSSR, 249:2 (1979), 278–281 | MR | Zbl

[8] Zigmund A., Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[9] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4,5 (1938), 245–251

[10] Krylov V. I., Bobkov V. V., Monastyrnyi P. I., Vychislitelnye metody vysshei matematiki, t. 1, Vysheish. shkola, Minsk, 1972

[11] Ligun A. A., “Tochnye neravenstva dlya splain-funktsii i nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Matem. zametki, 19:6 (1976), 913–926 | MR

[12] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{k=1}^m p_k f(x_k)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 589–614 | MR

[13] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[14] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10:3 (1946), 207–256

[15] Oskolkov K. I., “Ob optimalnosti kvadraturnoi formuly s ravnootstoyaschimi uzlami na klassakh periodicheskikh funktsii”, Dokl. AN SSSR, 249:1 (1979), 49–52 | MR

[16] Oskolkov K. I., “On optimal Quadrature Formulae on Certain Classes of Periodic Functions”, Appl. Math. Optim., 8 (1982), 245–263 | DOI | MR | Zbl

[17] Oskolkov K. I., “On exponential polynomials of the least $L^p$-norm”, Konstruktivnaya teoriya funktsii, Trudy Mezhdunarodnoi konferentsii, Sofiya, 1983, 464–467 | MR | Zbl

[18] Polia G., Sege G., Zadachi i teoremy iz analiza, t. 2, Nauka, M., 1978

[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, 2-e izd., Nauka, M., 1969

[20] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[21] Chakhkiev M. A., “Ob optimalnosti ravnootstoyaschikh uzlov”, Dokl. AN SSSR, 264:4 (1982), 836–839 | MR

[22] Chakhkiev M. A., “Eksponentsialnye polinomy, naimenee uklonyayuschiesya ot nulya, i optimalnye kvadraturnye formuly”, Matem. sbornik, 120(162):2 (1983), 273–285 | MR | Zbl